Skip to content
Snippets Groups Projects
bbsolver.cpp 54.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/********************************************************************************************
 Name:       DiscretizationSolver
 Discrete optimization for graph discretization
 Author:     J.Omer
 Sources:    C++
 License:    GNU General Public License v.2
 History:
 *********************************************************************************************/

#include "bbsolver.hpp"


ILOSTLBEGIN
//

ILOLAZYCONSTRAINTCALLBACK2(CyclesLazyConstraintsBB, Instance &, inst, DiscretizationSolver&, solver) {

#ifdef VERBOSE
    std::cout << "revorder: check lazy dicycle constraints" << std::endl;
#endif

    // Search for cycles in the current solution digraph
    //
    // generate the adjacency lists of the vertices corresponding to the current
    // cplex solution
    float tolerance = 1e-06;
    std::map<Vertex*, std::vector<Vertex*> > adjlist;
    std::map<Vertex*, int > nbrefs;
    for (Vertex* v : inst.vertices_) {
        adjlist[v] = std::vector<Vertex*>();
        nbrefs[v] = 0;
    }
    for (Vertex* u : inst.vertices_) {
        if (solver.modeltype_ == WITNESS) {
            if (getValue(solver.isvertexinclique(u) >= 1 - tolerance)) continue;
        }
        for (Vertex* v : u->neighbors_) {
            if (getValue(solver.isbefore(u, v)) >= 1 - tolerance) {
                adjlist[u].push_back(v);
                nbrefs[v]++;
            }
        }
    }
    //
    // search for the root of the digraph
    Vertex* root = nullptr;
    int minnbrefs = inst.U();
    if (solver.modeltype_ == WITNESS) {
        for (Vertex* v : inst.vertices_) {
            if (getValue(solver.isvertexinclique(v) >= 1 - tolerance)) {
                root = v;
                break;
            }
        }
    } else {
        for (Vertex* v : inst.vertices_) {
            if (nbrefs[v] < minnbrefs) {
                minnbrefs = nbrefs[v];
                root = v;
                break;
            }
        }
    }
    //
    // call the enumeration of cycles, returns false if there are none
    std::vector<std::vector<Vertex*> > cycles;
    bool iscyclic = solver.enumeratecycles(adjlist, root, cycles);

    // Look for dicycle inequalities : we restrict the search to the dicycles
    // that contain at least one edge in the distance graph
    // besides that, the search is performed using brute force
    int nbaddedcuts = 0;
    IloEnv env = getEnv();
    if (iscyclic) {
        for (std::vector<Vertex*> path : cycles) {
            IloExpr sumedges(env);
            int cyclelength = path.size();
            Vertex* u = path.back();
            for (int i = 0; i < cyclelength; i++) {
                Vertex* v = path[i];
                sumedges += solver.isbefore(u, v);
                u = v;
            }
            if ((solver.modeltype_ == WITNESS) && (cyclelength <= inst.L() + 1)) {
                add(sumedges - solver.isvertexinclique(path.front()) <= cyclelength - 1).end();
                nbaddedcuts++;
            } else {
                add(sumedges <= cyclelength - 1).end();
                nbaddedcuts++;
            }
        }
#ifdef VERBOSE
        std::cout << "revorder: number of violated dicycle constraints : " << nbaddedcuts << std::endl;
#endif
    } else {
#ifdef VERBOSE
        std::cout << "revorder: the graph is acyclic " << std::endl;
#endif
    }
    return;
}
/*************************************************************************************************************************************************************/
//
// sort the nodes by ascending number of ordered vertices
bool bbnodesnborderedcompare(BBNode* n1, BBNode* n2) { return (n1->nbordered() < n2->nbordered()); }
bool bbnodesbestcompare(BBNode*n1, BBNode* n2) {
    return ((float) n1->cost_ / n1->nbordered() > (float) n2->cost_ / n2->nbordered());
}

// Public methods
//
// constructor and destructor
//
// constructor used only for the root
BBNode::BBNode(Instance& inst): depth_(0), inst_(&inst), nbordered_(0), nbfullref_(0), istreated_(true) {}
//
// constructor used only for the initial cliques
BBNode::BBNode(Instance& inst, BBNode* root, Clique& c, bool branchonsmallerindex): depth_(1), father_(root), inst_(&inst), nbordered_(0), nbfullref_(0), istreated_(false) {
    this->orderedvertices_.clear();
    for (Vertex* v : inst.vertices_) {
        this->rank_[v] = -1;
        this->nbrefs_[v] = 0;
        this->isfullref_[v] = false;
        this->isordered_[v] = false;
        this->ispotentialchild_[v] = false;
        this->mustbefullref_[v] = false;
        this->maxrefs_[v] = v->degree_;
    }
    int currentrank = 1;
    for (Vertex* u : c.vertices_) {
        this->rank_[u] = currentrank++;
        this->orderedvertices_.push_back(u);
        this->switchtoordered(u);
        this->nbordered_++;
        //
        // update the number of references of the neighbors of the vertex
        for (Vertex* v : u->neighbors_) {
            if (!this->isordered_[v]) {
                this->nbrefs_[v]++;
            }
        }
    }
    //
    // record the list of partially and fully referenced (unordered) vertices
    for (Vertex* v: inst.vertices_) {
        if (!this->isordered_[v]) {
            //
            // record the list of unordered fully-referenced vertices
            if (this->nbrefs_[v] >= inst.U()) {
                this->isfullref_[v] = true;
                this->fullrefs_.push_back(v);
            }
            //
            // add partially referenced vertices to the list of potential choices for branching
            else if (this->nbrefs_[v] >= inst.L()) {
                if (branchonsmallerindex) {
                    bool largerindex = true;
                    Vertex* u = c.vertices_.back();
                    if (!u->isneighbor(v)) {
                        if (u->id_ >= v->id_) largerindex = false;
                    }
                    //
                    // to break symmetries, make sure that the chosen potential child is always that with biggest index
                    if (largerindex) {
                        this->ispotentialchild_[v] = true;
                        this->potentialchildren_.push_back(v);
                        //
                        // partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced
                        if (this->maxrefs_[v] <= inst.U() - 1) {
                            this->readytoorder_.push_back(v);
#ifdef VERBOSE
                            std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
#endif
                        }
                    }
                    else {
                        this->mustbefullref_[v] = true;
                        //
                        // if a vertex must be fully-referenced, but it has exactly U neighbors, it will for sure come after all its neighbors in the order
                        if(this->maxrefs_[v] <= inst.U()) {
                            for (Vertex* u: v->neighbors_) {
                                if (this->mustbefullref_[u]) {
                                    if (this->maxrefs_[u] >= inst.U()+1) {
                                        this->maxrefs_[u]--;
                                    }
                                }
                                else this->maxrefs_[u]--;
                            }
                        }
                    }
                }
                else {
                    this->ispotentialchild_[v] = true;
                    this->potentialchildren_.push_back(v);
                    //
                    // partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced
                    if (this->maxrefs_[v] <= inst.U() - 1) {
                        this->readytoorder_.push_back(v);
#ifdef VERBOSE
                        std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
#endif
                    }
                }
            }
        }
    }
    this->dualbound_ = -1;
    root->addtochildren(this);
}
//
// Make a copy of the input BB node: used for every other node
BBNode::BBNode(BBNode& node): id_(node.id_), depth_(node.depth_+1), father_(&node), inst_(node.inst_),
nbordered_(node.nbordered_), nbfullref_(node.nbfullref_), istreated_(false){
    cost_ = node.cost_;
    dualbound_ = node.dualbound_;
    primalbound_ = node.primalbound_;
    for (Vertex* v : inst_->vertices_) {
        rank_[v] = node.rank_.at(v);
        isordered_[v] = node.isordered_.at(v);
        nbrefs_[v] = node.nbrefs_.at(v);
        isfullref_[v] = node.isfullref_.at(v);
        ispotentialchild_[v] = node.ispotentialchild_.at(v);
        mustbefullref_[v] = node.mustbefullref_.at(v);
        maxrefs_[v] = node.maxrefs_.at(v);
    }
    fullrefs_.clear();
    orderedvertices_.clear();
    potentialchildren_.clear();
    children_.clear();
    for (Vertex* v: node.readytoorder_) readytoorder_.push_back(v);
    for (Vertex* v : node.fullrefs_) fullrefs_.push_back(v);
    for (Vertex* v : node.orderedvertices_) orderedvertices_.push_back(v);
    for (Vertex* v : node.potentialchildren_) potentialchildren_.push_back(v);
}
//
// Destroy the node
BBNode::~BBNode() {
    
    
}
//
// remove a vertex from the list of potential choice for branching
void BBNode::removefrompotentialchildren(Vertex* v) {
    //
    // no need to proceed if the vertex is not marked as potential child
    if (!this->ispotentialchild_[v]) return;
    
    this->ispotentialchild_[v] = false;
    std::vector<Vertex*>::iterator itv = this->potentialchildren_.begin();
    while (itv < this->potentialchildren_.end()) {
        if (*itv == v) {
            this->potentialchildren_.erase(itv);
            break;
        }
        else {
            itv++;
            //
            // detect error if the vertex was not found in the list of potential children
            if (itv == this->potentialchildren_.end()) {
                std::cout << "revorder: bb: did not find a potential child in the list" << '\n';
                throw;
            }
        }
    }
    itv = this->readytoorder_.begin();
    while (itv < this->readytoorder_.end()) {
        if (*itv == v) {
            this->readytoorder_.erase(itv);
            break;
        }
        itv++;
    }
}
//
// assign the next available rank to the input vertex
void BBNode::assignnextrank(Vertex* u) {
    //
    // assign the next available rank
    for (Vertex* v: this->orderedvertices_) {
        if (u == v) {
            std::cout << "Les ennuis commencent ici." << std::endl;
        }
    }
    this->rank_[u] = this->nbordered_ + 1;
    this->orderedvertices_.push_back(u);
    this->switchtoordered(u);
    this->nbordered_++;
    this->removefrompotentialchildren(u);
    
    if (this->nbrefs_[u] <= this->inst_->L() - 1) {
        std::cout << "revorder: bb: trying to assign a rank to a vertex with less than L references" << '\n';
        throw;
    }
    else if (this->nbrefs_[u] >= this->inst_->U()) {
        this->nbfullref_++;
    }
    //
    // update the number of references of the neighbors of v
    for (Vertex* v : u->neighbors_) {
        if (this->rank_[v] < 0) {
            this->nbrefs_[v]++;
            //
            // add partially-referenced vertices to the list of potential choices for branching
            if (this->nbrefs_[v] == this->inst_->L()) {
                this->potentialchildren_.push_back(v);
                this->ispotentialchild_[v] = true;
                //
                // partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced
                if (this->maxrefs_[v] <= this->inst_->U() - 1) {
                    this->readytoorder_.push_back(v);
#ifdef VERBOSE
                    std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
#endif
                }
            }
            //
            // vertex is fully-referenced if it has more than U references, and it is not a potential choice for branching anymore
            if (this->nbrefs_[v] == this->inst_->U()) {
                this->isfullref_[v] = true;
                this->fullrefs_.push_back(v);
                if (this->ispotentialchild_[v]) this->removefrompotentialchildren(v);
            }
        }
    }
}
//
// get the current objective value at a node, depending on the ordered vertices
void BBNode::setnodecost(Problem pb) {
    int nbpartials = 0;
    for (Vertex* u: this->inst_->vertices_) {
        if (this->isordered_[u]) {
            if (this->nbrefs_[u] <= this->inst_->U() - 1) nbpartials += 1;
        }
    }
    this->cost_ =  nbpartials;
}
//
// a bb node n1 dominates another one, n2, if the corresponding partial solution has a smaller or equal cost but its list of ordered vertices contains that of n2
bool BBSolver::dominates(BBNode& n1, BBNode& n2) {
    
    if ( n2.cost_ < n1.cost_ )  {
        return false;
    }
    
    for (Vertex* v : n2.orderedvertices_) {
        if (!(n1.isordered(v))) {
            return false;
        }
    }
    return true;
}
//
// propagate the set of ordered vertices by iteratively ordering fully-referenced vertices
void BBNode::prepropagation() {
#ifdef VERBOSE
    cout << "prepropagation" << endl;
#endif
    // iteratively propagate while there are fully-referenced vertices
    while (!this->fullrefs_.empty()) {
        Vertex* u = this->fullrefs_.back();
        this->fullrefs_.pop_back();
        this->isfullref_[u] = false;
        this->assignnextrank(u);
    }
    this->setnodecost(MINPARTIAL);
}
//
// propagate the set of ordered vertices by iteratively ordering vertices
// as long as there is either at least one unordered vertex with more than three
// references or exactly one unordered vertex with exactly three references
void BBNode::postpropagation() {
#ifdef VERBOSE
    cout << "in postpropagation" << endl;
#endif
    //
    // no need of propagation if all the vertices are ordered
    if (this->nbordered_ == this->inst_->nbvertices_) return;
    //
    // iteratively propagate while there are fully-referenced vertices or exactly one partially-referenced vertex
    while (true) {
        bool ispropagate = false;
        Vertex* u;
        //
        // add a vertex with more than U references
        if (!this->fullrefs_.empty()) {
            u = this->fullrefs_.back();
            this->fullrefs_.pop_back();
            this->isfullref_[u] = false;
            ispropagate = true;
        }
        //
        // if there is a partially referenced vertex with less than U neighbors, it can be ordered right away: it will never be fully referenced
        else if (!this->readytoorder_.empty()) {
            u = this->readytoorder_.back();
            this->readytoorder_.pop_back();
            ispropagate = true;
        }
        //
        // if there is exactly one partially referenced vertex: add it to the order
        else if (this->potentialchildren_.size() == 1) {
            u = this->potentialchildren_.back();
            this->potentialchildren_.pop_back();
            this->ispotentialchild_[u] = false;
            ispropagate = true;
        }
        
        if (!ispropagate) break;
        //
        // add the identified vertex at the end of the order
        this->assignnextrank(u);
    }
    //
    // update the cost of the node
    this->setnodecost(MINPARTIAL);
}
/*******************************************************************************
 Class BBSolver
 - an instance of BBSolver is a solver of the discretization problem using
 branch-and-bound
 *******************************************************************************/
// Public methods
//
// constructor and destructor
BBSolver::BBSolver(Instance* inst, Problem pb, std::string  optionfile, float timelimit):
DiscretizationSolver(inst, BRANCHANDBOUND, pb,  NONE, optionfile, timelimit) {
    this->isfeasible_ = false;
    this->isoptimal_ = false;
    this->bbnodes_ = 1;
    this->treatednodes_ = 0;
    this->nbactivenodes_ = 0;
    this->primalbound_ = inst->nbvertices_;
    
    if (!optionfile.empty())
    {
        std::ifstream infile(optionfile.c_str());
        if (!infile.is_open()) {
            throwError("revorder: error: the option file could not be opened");
        }
        // read the file line by line
        // one line contains the data relative to one option
        std::string line;
        while (std::getline(infile, line))
        {
            std::istringstream iss(line);
            std::string optionname;
            char buf[100];
            int optionvalue;
            std::string optionstring;
            
            //read the line and detect format errors
            if (!(iss >> buf)){
                std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
                throw;
            } // error
            optionname  = std::string(buf);
            if (optionname.find("relaxmodel") != std::string::npos) {
                if (!(iss >> buf)){
                    std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
                    throw;
                }
                optionstring = std::string(buf);
                if (!strcmp(optionstring.c_str(),"ccg"))
                {
                    this->modeltype_ = CCG;
                }
                else if (!strcmp(optionstring.c_str(),"cycles"))
                {
                    this->modeltype_ = CYCLES;
                }
                else if (!strcmp(optionstring.c_str(),"ranks"))
                {
                    this->modeltype_ = RANKS;
                }
                else if (!strcmp(optionstring.c_str(),"vertexrank"))
                {
                    this->modeltype_ = VERTEXRANK;
                }
                else if (!strcmp(optionstring.c_str(),"witness"))
                {
                    this->modeltype_ = WITNESS;
                }
                continue;
            }
            if (!(iss >> optionvalue)){
                std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
                throw;
            } // error
            //
            if (optionname.find("branchonsmallerindex") !=std::string::npos) {
                branchonsmallerindex_ = (bool) optionvalue;
                continue;
            }
            else if (optionname.find("prunesameneighbors") !=std::string::npos) {
                prunesameneighbors_ = (bool) optionvalue;
                continue;
            }
            else if (optionname.find("checkdominance") !=std::string::npos) {
                if (optionname.find("checkdominancealltree") !=std::string::npos) {
                    checkdominancealltree_ = (bool) optionvalue;
                    continue;
                }
                checkdominance_ = (bool) optionvalue;
                continue;
            }
            else if (optionname.find("maxdeltadominance") !=std::string::npos) {
                maxdeltadominance_ = optionvalue;
                continue;
            }
            else if (optionname.find("improvedualbound") !=std::string::npos) {
                improvedualbound_ = (bool) optionvalue;
                continue;
            }
            else if (optionname.find("userelaxbound") !=std::string::npos) {
                userelaxbound_ = (bool) optionvalue;
                continue;
            }
            else if (optionname.find("explorebest") !=std::string::npos) {
                explorebest_ = (bool) optionvalue;
                continue;
            }
            else if (optionname.find("exploredepth") !=std::string::npos) {
                if (optionname.find("exploredepthbeforebest") !=std::string::npos) {
                    exploredepthbeforebest_ = (bool) optionvalue;
                    continue;
                }
                exploredepth_ = (bool) optionvalue;
                continue;
            }
        }
    }
    else
    {
        //
        // set some parameters for the solution of the relaxation in dual bounds
        // computations
        this->modeltype_ = CCG;
        this->branchonsmallerindex_ = true;
        this->prunesameneighbors_ = true;
        this->checkdominance_ = true;
        this->checkdominancealltree_ = true;
        this->maxdeltadominance_ = 1;
        this->improvedualbound_ = false;
        this->userelaxbound_ = false;
        this->explorebest_ = false;
        this->exploredepth_ = false;
        this->exploredepthbeforebest_ = true;
    }
    //
    // build a root node
    this->rootnode_ = new BBNode(*inst);
}
//
BBSolver::~BBSolver() {
    cplexrelax_.end();
    relax_.end();
    env_.end();
    cplexdual_.end();
    modeldual_.end();
    envdual_.end();
    delete rootnode_;
}
//
// main method : called to run the branch-and-bound algorithm
int BBSolver::solve() {
    //
    // run timer
    IloTimer cpuClockTotal(this->env_);
    IloTimer cpuClockInit(this->env_);
    cpuClockTotal.start();
    cpuClockInit.start();
    
    std::cout << std::endl;
    std::cout << "revorder: ----------------------------------------------------------" << std::endl;
    std::cout << "\nrevorder: bb: Run preprocessing procedures " <<  std::endl << std::endl;
    //
    // try and reduce the size of the instance right from the beginnning
    this->inst_->computeneighbors();
    this->preallocatelowdegreevertices();
    //
    // enumerate the potential initial cliques
    if (!this->enumeratecliques(this->inst_->L() + 1)) {
        this->isfeasible_ = false;
        return false;
    }
    //
    // eliminate the redundant and dominated cliques
    this->eliminateredundantcliques();
    //
    // solve with greedy and remove cliques that cannot be completed
    this->isfeasible_ = this->greedysolve();
    if (!this->isfeasible_) return false;
    //
    // initialize the clique nodes
    for (Clique* c : this->cliques_) {
        BBNode* cliquenode =new BBNode(*inst_, rootnode_, *c, this->branchonsmallerindex_);
        this->bbnodesqueue_.push_back(cliquenode);
        cliquenode->primalbound_ = c->greedyobjvalue_;
        cliquenode->setid(this->bbnodes_);
        cliquenode->setnodecost(this->problem_);
        cliquenode->prepropagation();
        cliquenode->postpropagation();
        this->activenodes_[cliquenode->cost_].push_back(cliquenode);
        this->nbactivenodes_++;
        //
        // first propagate the partial order
        this->bbnodes_++;
    }
    std::cout << "revorder: bb: preprocessing created " << this->bbnodesqueue_.size() << " initial clique nodes" << std::endl;
    //
    // sort the bb nodes according to the choice of exploration method
    if (this->exploredepth_ || this->exploredepthbeforebest_) {
        std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(),  bbnodesnborderedcompare);
    }
    else if (this->explorebest_){
        std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(),  bbnodesbestcompare);
    }
    else {
        std::cout << "revorder: bb: need to choose an exploration method in branch-and-bound" << std::endl;
        throw;
    }
    //
#ifdef VERBOSE
    std::cout << "revorder: bb: greatest number of ordered vertices in a clique: ";
    std::cout << ", " << this->bbnodesqueue_.front()->nbordered() << " vertices" << std::endl;
#endif
    //
    // compute sets of vertices that must contain at least one partially-referenced vertex
    this->computecliquecuts(this->cliquecutsmaxsize_);
    //
    // identify cycle of vertices with degree smaller than U+1: in each of these cycles, at least one vertex is partially referenced
    this->enumeratelowdegreecycles();
    //
    // initialize the IP used for improved dual bound
    this->initializedualboundIP();
    //
    // set greedy solution as initial primal bound
    this->primalbound_ = this->objvalue_;
    //
    cpuClockInit.stop();
    
    // Run the branch-and-bound algorithm
    //
    // initialize the ip model to find dual bounds using the linear relaxation
//    IloModel model(this->env_);
    this->relax_ = IloModel(this->env_);
//    this->defineminpartialip(model);
    if (userelaxbound_) {
//        this->createrelaxationmodel(model, this->relax_);
        this->defineminpartialip(this->relax_);
        this->cplexrelax_ = IloCplex(this->env_);
        this->cplexrelax_.extract(this->relax_);
    }
    //
    // treat
    
    std::cout << std::endl;
    std::cout << "revorder: ----------------------------------------------------------" << std::endl;
    std::cout << "\nrevorder: bb: Start the B&B algorithm " <<  std::endl << std::endl;
    
    while (!this->bbnodesqueue_.empty()) {
        this->treatnode(*(this->bbnodesqueue_.front()));
        if (cpuClockTotal.getTime() > this->timelimit_) {
            std::cout << "revorder: bb: time limit has been reached, stop the solution algorithm" << std::endl;
            break;
        }
    }
    cpuClockTotal.stop();
    
    
    // Display the results
    this->totaltime_ = cpuClockTotal.getTime();
    this->relaxtime_ = 0.0;
    
    std::cout << std::endl;
    std::cout << "revorder: ----------------------------------------------------------" << std::endl;
    std::cout << "revorder: ----------------------------------------------------------" << std::endl;
    std::cout << "\nmdjeep: Branch-and-bound solution report: " << std::endl;
    
    if (isfeasible_)	{
        this->objvalue_ = this->primalbound_;
        
        //
        // the solution is optimal only if all the bb nodes have been treated
        if (this->bbnodesqueue_.empty()) {
            isoptimal_ = true;
            std::cout << "revorder: the instance was solved to optimality" << std::endl;
        }
        else {
            std::cout << "revorder: the branch-and-bound was stopped before proving optimality" << std::endl;
        }
        //
        // reconstruct the solution by including the preallocated vertices
        objvalue_ += this->inst_->preallocatedvertices_.size();
        this->reconstructsolution();
        //
        // display the solution
        std::cout << "revorder: total cpu time                  = " << cpuClockTotal.getTime() << " s" << std::endl;
        std::cout << "revorder: initialization cpu time         = " << cpuClockInit.getTime() << " s" << std::endl;
        std::cout << "revorder: number of explored nodes        = " << this->treatednodes_ << std::endl;
        std::cout << "revorder: number of created nodes        = " << this->bbnodes_ << std::endl;
        std::cout << "revorder: value of the objective function = " << this->objvalue_ << " (after addition of preallocated vertices)" << std::endl;
        //
        // verify the resulting order is indeed a revorder
        this->verifyorder(this->bestrank_);
    }
    else {
        std::cout << "revorder: the instance is not discretizable!" << std::endl;
    }
    return isfeasible_;
}
//
// treat a branch-and-bound node (compute bounds and branch)
void BBSolver::treatnode(BBNode& node) {
    this->treatednodes_++;
    if (std::remainder(this->treatednodes_, 100) == 0) {
        std::cout << "revorder: bb: treated nodes = " << this->treatednodes_ << ", nodes in the queue = " << this->bbnodesqueue_.size() << ", nodes in memory = " << this->nbactivenodes_  << ", primal bound = " << this->primalbound_ <<  std::endl;
    }
    //
    // remove the bb node from the list
    //
    // make sure to maintain the heap first
    if (this->isfeasible_) {
        if (this->exploredepth_ ) {
            std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
        }
        else if (this->explorebest_ || this->exploredepthbeforebest_) {
            std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
        }
    }
    else {
        if (this->explorebest_) {
            std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
            
        }
        else {
            std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
        }
    }
    //
    // actually remove the node from the queue
    this->bbnodesqueue_.pop_back();
    //
    // update the primal bound and prune the node if it is a leaf of the
    // enumeration tree
    if (node.nbordered() == this->inst_->nbvertices_) {
#ifdef VERBOSE
        std::cout << "revorder: bb: reached a leaf at node " << node.id() << ": depth = " << node.depth();
#endif
        
        node.primalbound_ = this->getobjvalue(node.rank_, node.nbrefs_);
        //
        //  update the primal bound if improved
        if (node.primalbound_ < this->primalbound_) {
            //
            // swap the search method if this is the first feasible solution
            std::cout << "revorder: bb: the primal bound has been improved, value = " << node.primalbound_ << std::endl;
            if (!this->isfeasible_) {
                if (this->exploredepthbeforebest_) {
                    std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
                }
                this->isfeasible_ = true;
            }
            this->primalbound_ = node.primalbound_;
            this->bestnbfullref_ = this->getnbfullref(node.rank_, node.nbrefs_);
            for (Vertex* v : inst_->vertices_) {
                this->bestrank_[v] = node.rank(v);
            }
        }
        this->erasenodefromall(&node);
    }
    //
    // otherwise, compute dual and primal bound and prepare for next node
    else {
        //
        // prune the node if no potential child node
        if (node.potentialchildren_.empty()) {
            //
#ifdef VERBOSE
            std::cout << "revorder: bb: prune node " << node.id() << ": ";
            std::cout << ": no feasible solution on this branch" << std::endl;
#endif
            //
            this->erasenodefromall(&node);
        }
        else {
            //
            // compute a dual bound based on the ordered vertices
            this->computedualbound(node);
            //
            // prune the node by using bounds
            if (node.dualbound_ >= this->primalbound_) {
                //
#ifdef VERBOSE
                std::cout << "revorder: bb: prune node " << node.id() << ": ";
                std::cout << "using bounds: primal = " << this->primalbound_;
                std::cout << " ; dual = " << node.dualbound_ << std::endl;
#endif
                //
                this->erasenodefromall(&node);
            }
            //
            // otherwise, create new nodes by branching
            else {
                this->branch(node);
                node.istreated_ = true;
//                if (!this->checkdominancealltree_) {
//                    this->erasenodefromall(&node);
//                }
            }
        }
    }
    //
    // treat next node in the queue
    // since it is a heap, the front node is always the greatest in the implemented
    // order
#ifdef VERBOSE
    if (!this->bbnodesqueue_.empty()) {
        BBNode* nextnode = this->bbnodesqueue_.front();
        std::cout << '\n' << "revorder: bb: treat node " << nextnode->id() << " ; depth = " << nextnode->depth() << " ; ";
        std::cout << nextnode->nbordered() << " ordered vertices ; " << nextnode->nbpartialref() << " partially referenced vertices" << std::endl;
    }
#endif
    
    // make_heap pour bien ranger les noeuds de branch-and-bound au fur et a mesure
    
}
//
// propagate an initial clique by iteratively adding the fully-referenced vertices until
// one is necessarily free
void BBSolver::branch(BBNode& node) {
    //
    // create the children of the input node
    // propagate the order starting from each incomplete order to detect dominated
    // orders
    std::vector<BBNode*> childrennodes;
    std::map<BBNode*, bool> isdominated;
    std::map<Vertex*, bool> issymmetric;
    //
    // we start by checking diverse pruning rules that need to be applied before dominance
    for (int i = 0; i < node.potentialchildren_.size() ; i++) {
        Vertex* u = node.potentialchildren_[i];
        issymmetric[u] = false;
        
        if (! this->prunesameneighbors_) continue;
        
        for (int j = 0; j < i; j++) {
            Vertex* v = node.potentialchildren_[j];
            if (issymmetric[v]) continue;
            //
            // if two vertices that can be chosen for branching have the exact same unordered neighbors, only that with smaller number of references needs to be considered for branching at this stage
            bool sameneighbors = true;
            for (Vertex* neighbor: u->neighbors_) {
                if ( !node.isordered(neighbor) ) {
                    if ( !v->isneighbor_[neighbor] ) {
                        sameneighbors = false;
                        break;
                    }
                }
            }
            if (sameneighbors) {
                //
#ifdef VERBOSE
                std::cout << "revorder: bb: prune node: two potential children have same neighbors: vertices " << u->id_ << " and " << v->id_ <<  std::endl;
#endif
                //
                if (node.nbrefs_[u] < node.nbrefs_[v]) issymmetric[v] = true;
                else if (node.nbrefs_[v] < node.nbrefs_[u]) issymmetric[u] = true;
                else {
                    if (u->id_ < v->id_) issymmetric[v] = true;
                    else if (v->id_ < u->id_) issymmetric[u] =true;
                }
            }
        }
    }
    for (Vertex* v : node.potentialchildren_) {
        if (issymmetric[v]) continue; // do not consider the vertices that are symmetric
        
        BBNode* child = new BBNode(node);
        //
        // in MINPARTIAL, we can always make the arbitrary decision that if a vertex must be ordered when it is still partially referenced, then it is the vertex with smallest index among all the potential children; as a consequence the vertices with smaller index must be removed from the list of potential children
        if ( this->branchonsmallerindex_ ) {
            std::vector<Vertex*>::iterator itv = child->potentialchildren_.begin();
            while (itv < child->potentialchildren_.end()) {
                if ( ((*itv)->id_ < v->id_) ) {
                    child->ispotentialchild_[*itv] = false;
                    child->potentialchildren_.erase(itv);
                    child->mustbefullref_[*itv] = true;
                    //
                    // if a vertex must be fully-referenced, but it has exactly U neighbors, it will for sure come after all its neighbors in the order
                    if(child->maxrefs_[*itv] <= this->inst_->U()) {
                        for (Vertex* u: v->neighbors_) {
                            if (child->mustbefullref_[u]) {
                                if (child->maxrefs_[u] >= this->inst_->U()+1) {
                                    child->maxrefs_[u]--;
                                }
                            }
                            else child->maxrefs_[u]--;
                        }
                    }
                }
                else itv++;
            }
        }
        
        child->assignnextrank(v);
        child->prepropagation();
        isdominated[child] = false;
        childrennodes.push_back(child);
    }
    //
    // check for classical dominance
    for (BBNode* n1 : childrennodes) {
        if (!this->checkdominance_) continue; // do not check dominance if option is deactivated
        
        if (isdominated[n1]) continue;
        for (BBNode* n2 : childrennodes) {
            if (n2 == n1) continue;
            else if (isdominated[n2]) continue;
            //
            // classical dominance
            else if (this->dominates(*n2,*n1)) {
                isdominated[n1] = true;
                //
#ifdef VERBOSE
                std::cout << "revorder: bb: prune node: dominance among children" <<  std::endl;
#endif
                break;
            }
            else if (this->dominates(*n1,*n2)) {
                isdominated[n2] = true;
                //
#ifdef VERBOSE
                std::cout << "revorder: bb: prune node: dominance among children" <<  std::endl;
#endif
            }
        }
    }
    //
    // scan all the bb nodes in the queue to delete the dominated ones if option is activated
    if ( (this->checkdominancealltree_) && (this->checkdominance_)) {
        for (BBNode* n : childrennodes) {
            if (isdominated[n]) continue;
            for (int deltacost = -this->maxdeltadominance_ ; deltacost <= this->maxdeltadominance_; deltacost++) {
                if (n->cost_ <= deltacost) continue;
                if (!isdominated[n]) {
                    isdominated[n] = checkdominancewithlist(n, this->activenodes_[n->cost_ - deltacost]);
                }
            }
        }
    }
    //
    // delete the redundant nodes and add the others to the node queue
    for (BBNode* n : childrennodes) {
        if (isdominated[n]) delete n;
        //
        // make sure to maintain the heap while pushing the new node in the queue
        else {
            this->bbnodes_++;
            n->setid(this->bbnodes_);
            node.addtochildren(n);
            n->postpropagation();
            this->bbnodesqueue_.push_back(n);
            this->activenodes_[n->cost_].push_back(n);
            this->nbactivenodes_++;
            if (this->exploredepth_) {
                std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
            }
            else if (this->explorebest_) {
                std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
            }
            else if (this->exploredepthbeforebest_) {
                if (!this->isfeasible_) {
                    std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
                }
                else {
                    std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
                }
            }
        }
    }
#ifdef VERBOSE
    std::cout << "revorder: bb: " << this->bbnodesqueue_.size() << " nodes in the queue" << std::endl;
#endif
}
//
// check the dominance of input node with every node in the input vector
bool BBSolver::checkdominancewithlist(BBNode* n1, std::vector<BBNode*>& nodelist) {
    std::vector<BBNode*>::iterator itnode = nodelist.begin();
    
    while (itnode < nodelist.end()) {
        BBNode* n2 = (*itnode);
        if (this->dominates(*n2,*n1)) {
            //
#ifdef VERBOSE
            std::cout << "revorder: bb: prune node: dominance of potential child ";
            if (n2->istreated_) std::cout << " with treated node" <<  std::endl;
            else std::cout << "with queue " << std::endl;
            std::cout << "revorder: bb: depth: dominant = " << n2->depth() << ", dominated = " << n1->depth() << std::endl;
            std::cout << "revorder: bb: costs: dominant = " << n2->cost_ << ", dominated = " << n1->cost_ << std::endl;
#endif