Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/********************************************************************************************
Name: DiscretizationSolver
Discrete optimization for graph discretization
Author: J.Omer
Sources: C++
License: GNU General Public License v.2
History:
*********************************************************************************************/
#include "bbsolver.hpp"
ILOSTLBEGIN
//
ILOLAZYCONSTRAINTCALLBACK2(CyclesLazyConstraintsBB, Instance &, inst, DiscretizationSolver&, solver) {
#ifdef VERBOSE
std::cout << "revorder: check lazy dicycle constraints" << std::endl;
#endif
// Search for cycles in the current solution digraph
//
// generate the adjacency lists of the vertices corresponding to the current
// cplex solution
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
std::map<Vertex*, int > nbrefs;
for (Vertex* v : inst.vertices_) {
adjlist[v] = std::vector<Vertex*>();
nbrefs[v] = 0;
}
for (Vertex* u : inst.vertices_) {
if (solver.modeltype_ == WITNESS) {
if (getValue(solver.isvertexinclique(u) >= 1 - tolerance)) continue;
}
for (Vertex* v : u->neighbors_) {
if (getValue(solver.isbefore(u, v)) >= 1 - tolerance) {
adjlist[u].push_back(v);
nbrefs[v]++;
}
}
}
//
// search for the root of the digraph
Vertex* root = nullptr;
int minnbrefs = inst.U();
if (solver.modeltype_ == WITNESS) {
for (Vertex* v : inst.vertices_) {
if (getValue(solver.isvertexinclique(v) >= 1 - tolerance)) {
root = v;
break;
}
}
} else {
for (Vertex* v : inst.vertices_) {
if (nbrefs[v] < minnbrefs) {
minnbrefs = nbrefs[v];
root = v;
break;
}
}
}
//
// call the enumeration of cycles, returns false if there are none
std::vector<std::vector<Vertex*> > cycles;
bool iscyclic = solver.enumeratecycles(adjlist, root, cycles);
// Look for dicycle inequalities : we restrict the search to the dicycles
// that contain at least one edge in the distance graph
// besides that, the search is performed using brute force
int nbaddedcuts = 0;
IloEnv env = getEnv();
if (iscyclic) {
for (std::vector<Vertex*> path : cycles) {
IloExpr sumedges(env);
int cyclelength = path.size();
Vertex* u = path.back();
for (int i = 0; i < cyclelength; i++) {
Vertex* v = path[i];
sumedges += solver.isbefore(u, v);
u = v;
}
if ((solver.modeltype_ == WITNESS) && (cyclelength <= inst.L() + 1)) {
add(sumedges - solver.isvertexinclique(path.front()) <= cyclelength - 1).end();
nbaddedcuts++;
} else {
add(sumedges <= cyclelength - 1).end();
nbaddedcuts++;
}
}
#ifdef VERBOSE
std::cout << "revorder: number of violated dicycle constraints : " << nbaddedcuts << std::endl;
#endif
} else {
#ifdef VERBOSE
std::cout << "revorder: the graph is acyclic " << std::endl;
#endif
}
return;
}
/*************************************************************************************************************************************************************/
//
// sort the nodes by ascending number of ordered vertices
bool bbnodesnborderedcompare(BBNode* n1, BBNode* n2) { return (n1->nbordered() < n2->nbordered()); }
bool bbnodesbestcompare(BBNode*n1, BBNode* n2) {
return ((float) n1->cost_ / n1->nbordered() > (float) n2->cost_ / n2->nbordered());
}
// Public methods
//
// constructor and destructor
//
// constructor used only for the root
BBNode::BBNode(Instance& inst): depth_(0), inst_(&inst), nbordered_(0), nbfullref_(0), istreated_(true) {}
//
// constructor used only for the initial cliques
BBNode::BBNode(Instance& inst, BBNode* root, Clique& c, bool branchonsmallerindex): depth_(1), father_(root), inst_(&inst), nbordered_(0), nbfullref_(0), istreated_(false) {
this->orderedvertices_.clear();
for (Vertex* v : inst.vertices_) {
this->rank_[v] = -1;
this->nbrefs_[v] = 0;
this->isfullref_[v] = false;
this->isordered_[v] = false;
this->ispotentialchild_[v] = false;
this->mustbefullref_[v] = false;
this->maxrefs_[v] = v->degree_;
}
int currentrank = 1;
for (Vertex* u : c.vertices_) {
this->rank_[u] = currentrank++;
this->orderedvertices_.push_back(u);
this->switchtoordered(u);
this->nbordered_++;
//
// update the number of references of the neighbors of the vertex
for (Vertex* v : u->neighbors_) {
if (!this->isordered_[v]) {
this->nbrefs_[v]++;
}
}
}
//
// record the list of partially and fully referenced (unordered) vertices
for (Vertex* v: inst.vertices_) {
if (!this->isordered_[v]) {
//
// record the list of unordered fully-referenced vertices
if (this->nbrefs_[v] >= inst.U()) {
this->isfullref_[v] = true;
this->fullrefs_.push_back(v);
}
//
// add partially referenced vertices to the list of potential choices for branching
else if (this->nbrefs_[v] >= inst.L()) {
if (branchonsmallerindex) {
bool largerindex = true;
Vertex* u = c.vertices_.back();
if (!u->isneighbor(v)) {
if (u->id_ >= v->id_) largerindex = false;
}
//
// to break symmetries, make sure that the chosen potential child is always that with biggest index
if (largerindex) {
this->ispotentialchild_[v] = true;
this->potentialchildren_.push_back(v);
//
// partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced
if (this->maxrefs_[v] <= inst.U() - 1) {
this->readytoorder_.push_back(v);
#ifdef VERBOSE
std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
#endif
}
}
else {
this->mustbefullref_[v] = true;
//
// if a vertex must be fully-referenced, but it has exactly U neighbors, it will for sure come after all its neighbors in the order
if(this->maxrefs_[v] <= inst.U()) {
for (Vertex* u: v->neighbors_) {
if (this->mustbefullref_[u]) {
if (this->maxrefs_[u] >= inst.U()+1) {
this->maxrefs_[u]--;
}
}
else this->maxrefs_[u]--;
}
}
}
}
else {
this->ispotentialchild_[v] = true;
this->potentialchildren_.push_back(v);
//
// partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced
if (this->maxrefs_[v] <= inst.U() - 1) {
this->readytoorder_.push_back(v);
#ifdef VERBOSE
std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
#endif
}
}
}
}
}
this->dualbound_ = -1;
root->addtochildren(this);
}
//
// Make a copy of the input BB node: used for every other node
BBNode::BBNode(BBNode& node): id_(node.id_), depth_(node.depth_+1), father_(&node), inst_(node.inst_),
nbordered_(node.nbordered_), nbfullref_(node.nbfullref_), istreated_(false){
cost_ = node.cost_;
dualbound_ = node.dualbound_;
primalbound_ = node.primalbound_;
for (Vertex* v : inst_->vertices_) {
rank_[v] = node.rank_.at(v);
isordered_[v] = node.isordered_.at(v);
nbrefs_[v] = node.nbrefs_.at(v);
isfullref_[v] = node.isfullref_.at(v);
ispotentialchild_[v] = node.ispotentialchild_.at(v);
mustbefullref_[v] = node.mustbefullref_.at(v);
maxrefs_[v] = node.maxrefs_.at(v);
}
fullrefs_.clear();
orderedvertices_.clear();
potentialchildren_.clear();
children_.clear();
for (Vertex* v: node.readytoorder_) readytoorder_.push_back(v);
for (Vertex* v : node.fullrefs_) fullrefs_.push_back(v);
for (Vertex* v : node.orderedvertices_) orderedvertices_.push_back(v);
for (Vertex* v : node.potentialchildren_) potentialchildren_.push_back(v);
}
//
// Destroy the node
BBNode::~BBNode() {
}
//
// remove a vertex from the list of potential choice for branching
void BBNode::removefrompotentialchildren(Vertex* v) {
//
// no need to proceed if the vertex is not marked as potential child
if (!this->ispotentialchild_[v]) return;
this->ispotentialchild_[v] = false;
std::vector<Vertex*>::iterator itv = this->potentialchildren_.begin();
while (itv < this->potentialchildren_.end()) {
if (*itv == v) {
this->potentialchildren_.erase(itv);
break;
}
else {
itv++;
//
// detect error if the vertex was not found in the list of potential children
if (itv == this->potentialchildren_.end()) {
std::cout << "revorder: bb: did not find a potential child in the list" << '\n';
throw;
}
}
}
itv = this->readytoorder_.begin();
while (itv < this->readytoorder_.end()) {
if (*itv == v) {
this->readytoorder_.erase(itv);
break;
}
itv++;
}
}
//
// assign the next available rank to the input vertex
void BBNode::assignnextrank(Vertex* u) {
//
// assign the next available rank
for (Vertex* v: this->orderedvertices_) {
if (u == v) {
std::cout << "Les ennuis commencent ici." << std::endl;
}
}
this->rank_[u] = this->nbordered_ + 1;
this->orderedvertices_.push_back(u);
this->switchtoordered(u);
this->nbordered_++;
this->removefrompotentialchildren(u);
if (this->nbrefs_[u] <= this->inst_->L() - 1) {
std::cout << "revorder: bb: trying to assign a rank to a vertex with less than L references" << '\n';
throw;
}
else if (this->nbrefs_[u] >= this->inst_->U()) {
this->nbfullref_++;
}
//
// update the number of references of the neighbors of v
for (Vertex* v : u->neighbors_) {
if (this->rank_[v] < 0) {
this->nbrefs_[v]++;
//
// add partially-referenced vertices to the list of potential choices for branching
if (this->nbrefs_[v] == this->inst_->L()) {
this->potentialchildren_.push_back(v);
this->ispotentialchild_[v] = true;
//
// partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced
if (this->maxrefs_[v] <= this->inst_->U() - 1) {
this->readytoorder_.push_back(v);
#ifdef VERBOSE
std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
#endif
}
}
//
// vertex is fully-referenced if it has more than U references, and it is not a potential choice for branching anymore
if (this->nbrefs_[v] == this->inst_->U()) {
this->isfullref_[v] = true;
this->fullrefs_.push_back(v);
if (this->ispotentialchild_[v]) this->removefrompotentialchildren(v);
}
}
}
}
//
// get the current objective value at a node, depending on the ordered vertices
void BBNode::setnodecost(Problem pb) {
int nbpartials = 0;
for (Vertex* u: this->inst_->vertices_) {
if (this->isordered_[u]) {
if (this->nbrefs_[u] <= this->inst_->U() - 1) nbpartials += 1;
}
}
this->cost_ = nbpartials;
}
//
// a bb node n1 dominates another one, n2, if the corresponding partial solution has a smaller or equal cost but its list of ordered vertices contains that of n2
bool BBSolver::dominates(BBNode& n1, BBNode& n2) {
if ( n2.cost_ < n1.cost_ ) {
return false;
}
for (Vertex* v : n2.orderedvertices_) {
if (!(n1.isordered(v))) {
return false;
}
}
return true;
}
//
// propagate the set of ordered vertices by iteratively ordering fully-referenced vertices
void BBNode::prepropagation() {
#ifdef VERBOSE
cout << "prepropagation" << endl;
#endif
// iteratively propagate while there are fully-referenced vertices
while (!this->fullrefs_.empty()) {
Vertex* u = this->fullrefs_.back();
this->fullrefs_.pop_back();
this->isfullref_[u] = false;
this->assignnextrank(u);
}
this->setnodecost(MINPARTIAL);
}
//
// propagate the set of ordered vertices by iteratively ordering vertices
// as long as there is either at least one unordered vertex with more than three
// references or exactly one unordered vertex with exactly three references
void BBNode::postpropagation() {
#ifdef VERBOSE
cout << "in postpropagation" << endl;
#endif
//
// no need of propagation if all the vertices are ordered
if (this->nbordered_ == this->inst_->nbvertices_) return;
//
// iteratively propagate while there are fully-referenced vertices or exactly one partially-referenced vertex
while (true) {
bool ispropagate = false;
Vertex* u;
//
// add a vertex with more than U references
if (!this->fullrefs_.empty()) {
u = this->fullrefs_.back();
this->fullrefs_.pop_back();
this->isfullref_[u] = false;
ispropagate = true;
}
//
// if there is a partially referenced vertex with less than U neighbors, it can be ordered right away: it will never be fully referenced
else if (!this->readytoorder_.empty()) {
u = this->readytoorder_.back();
this->readytoorder_.pop_back();
ispropagate = true;
}
//
// if there is exactly one partially referenced vertex: add it to the order
else if (this->potentialchildren_.size() == 1) {
u = this->potentialchildren_.back();
this->potentialchildren_.pop_back();
this->ispotentialchild_[u] = false;
ispropagate = true;
}
if (!ispropagate) break;
//
// add the identified vertex at the end of the order
this->assignnextrank(u);
}
//
// update the cost of the node
this->setnodecost(MINPARTIAL);
}
/*******************************************************************************
Class BBSolver
- an instance of BBSolver is a solver of the discretization problem using
branch-and-bound
*******************************************************************************/
// Public methods
//
// constructor and destructor
BBSolver::BBSolver(Instance* inst, Problem pb, std::string optionfile, float timelimit):
DiscretizationSolver(inst, BRANCHANDBOUND, pb, NONE, optionfile, timelimit) {
this->isfeasible_ = false;
this->isoptimal_ = false;
this->bbnodes_ = 1;
this->treatednodes_ = 0;
this->nbactivenodes_ = 0;
this->primalbound_ = inst->nbvertices_;
if (!optionfile.empty())
{
std::ifstream infile(optionfile.c_str());
if (!infile.is_open()) {
throwError("revorder: error: the option file could not be opened");
}
// read the file line by line
// one line contains the data relative to one option
std::string line;
while (std::getline(infile, line))
{
std::istringstream iss(line);
std::string optionname;
char buf[100];
int optionvalue;
std::string optionstring;
//read the line and detect format errors
if (!(iss >> buf)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
} // error
optionname = std::string(buf);
if (optionname.find("relaxmodel") != std::string::npos) {
if (!(iss >> buf)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
}
optionstring = std::string(buf);
if (!strcmp(optionstring.c_str(),"ccg"))
{
this->modeltype_ = CCG;
}
else if (!strcmp(optionstring.c_str(),"cycles"))
{
this->modeltype_ = CYCLES;
}
else if (!strcmp(optionstring.c_str(),"ranks"))
{
this->modeltype_ = RANKS;
}
else if (!strcmp(optionstring.c_str(),"vertexrank"))
{
this->modeltype_ = VERTEXRANK;
}
else if (!strcmp(optionstring.c_str(),"witness"))
{
this->modeltype_ = WITNESS;
}
continue;
}
if (!(iss >> optionvalue)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
} // error
//
if (optionname.find("branchonsmallerindex") !=std::string::npos) {
branchonsmallerindex_ = (bool) optionvalue;
continue;
}
else if (optionname.find("prunesameneighbors") !=std::string::npos) {
prunesameneighbors_ = (bool) optionvalue;
continue;
}
else if (optionname.find("checkdominance") !=std::string::npos) {
if (optionname.find("checkdominancealltree") !=std::string::npos) {
checkdominancealltree_ = (bool) optionvalue;
continue;
}
checkdominance_ = (bool) optionvalue;
continue;
}
else if (optionname.find("maxdeltadominance") !=std::string::npos) {
maxdeltadominance_ = optionvalue;
continue;
}
else if (optionname.find("improvedualbound") !=std::string::npos) {
improvedualbound_ = (bool) optionvalue;
continue;
}
else if (optionname.find("userelaxbound") !=std::string::npos) {
userelaxbound_ = (bool) optionvalue;
continue;
}
else if (optionname.find("explorebest") !=std::string::npos) {
explorebest_ = (bool) optionvalue;
continue;
}
else if (optionname.find("exploredepth") !=std::string::npos) {
if (optionname.find("exploredepthbeforebest") !=std::string::npos) {
exploredepthbeforebest_ = (bool) optionvalue;
continue;
}
exploredepth_ = (bool) optionvalue;
continue;
}
}
}
else
{
//
// set some parameters for the solution of the relaxation in dual bounds
// computations
this->modeltype_ = CCG;
this->branchonsmallerindex_ = true;
this->prunesameneighbors_ = true;
this->checkdominance_ = true;
this->checkdominancealltree_ = true;
this->maxdeltadominance_ = 1;
this->improvedualbound_ = false;
this->userelaxbound_ = false;
this->explorebest_ = false;
this->exploredepth_ = false;
this->exploredepthbeforebest_ = true;
}
//
// build a root node
this->rootnode_ = new BBNode(*inst);
}
//
BBSolver::~BBSolver() {
cplexrelax_.end();
relax_.end();
env_.end();
cplexdual_.end();
modeldual_.end();
envdual_.end();
delete rootnode_;
}
//
// main method : called to run the branch-and-bound algorithm
int BBSolver::solve() {
//
// run timer
IloTimer cpuClockTotal(this->env_);
IloTimer cpuClockInit(this->env_);
cpuClockTotal.start();
cpuClockInit.start();
std::cout << std::endl;
std::cout << "revorder: ----------------------------------------------------------" << std::endl;
std::cout << "\nrevorder: bb: Run preprocessing procedures " << std::endl << std::endl;
//
// try and reduce the size of the instance right from the beginnning
this->inst_->computeneighbors();
this->preallocatelowdegreevertices();
//
// enumerate the potential initial cliques
if (!this->enumeratecliques(this->inst_->L() + 1)) {
this->isfeasible_ = false;
return false;
}
//
// eliminate the redundant and dominated cliques
this->eliminateredundantcliques();
//
// solve with greedy and remove cliques that cannot be completed
this->isfeasible_ = this->greedysolve();
if (!this->isfeasible_) return false;
//
// initialize the clique nodes
for (Clique* c : this->cliques_) {
BBNode* cliquenode =new BBNode(*inst_, rootnode_, *c, this->branchonsmallerindex_);
this->bbnodesqueue_.push_back(cliquenode);
cliquenode->primalbound_ = c->greedyobjvalue_;
cliquenode->setid(this->bbnodes_);
cliquenode->setnodecost(this->problem_);
cliquenode->prepropagation();
cliquenode->postpropagation();
this->activenodes_[cliquenode->cost_].push_back(cliquenode);
this->nbactivenodes_++;
//
// first propagate the partial order
this->bbnodes_++;
}
std::cout << "revorder: bb: preprocessing created " << this->bbnodesqueue_.size() << " initial clique nodes" << std::endl;
//
// sort the bb nodes according to the choice of exploration method
if (this->exploredepth_ || this->exploredepthbeforebest_) {
std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
}
else if (this->explorebest_){
std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
}
else {
std::cout << "revorder: bb: need to choose an exploration method in branch-and-bound" << std::endl;
throw;
}
//
#ifdef VERBOSE
std::cout << "revorder: bb: greatest number of ordered vertices in a clique: ";
std::cout << ", " << this->bbnodesqueue_.front()->nbordered() << " vertices" << std::endl;
#endif
//
// compute sets of vertices that must contain at least one partially-referenced vertex
this->computecliquecuts(this->cliquecutsmaxsize_);
//
// identify cycle of vertices with degree smaller than U+1: in each of these cycles, at least one vertex is partially referenced
this->enumeratelowdegreecycles();
//
// initialize the IP used for improved dual bound
this->initializedualboundIP();
//
// set greedy solution as initial primal bound
this->primalbound_ = this->objvalue_;
//
cpuClockInit.stop();
// Run the branch-and-bound algorithm
//
// initialize the ip model to find dual bounds using the linear relaxation
// IloModel model(this->env_);
this->relax_ = IloModel(this->env_);
// this->defineminpartialip(model);
if (userelaxbound_) {
// this->createrelaxationmodel(model, this->relax_);
this->defineminpartialip(this->relax_);
this->cplexrelax_ = IloCplex(this->env_);
this->cplexrelax_.extract(this->relax_);
}
//
// treat
std::cout << std::endl;
std::cout << "revorder: ----------------------------------------------------------" << std::endl;
std::cout << "\nrevorder: bb: Start the B&B algorithm " << std::endl << std::endl;
while (!this->bbnodesqueue_.empty()) {
this->treatnode(*(this->bbnodesqueue_.front()));
if (cpuClockTotal.getTime() > this->timelimit_) {
std::cout << "revorder: bb: time limit has been reached, stop the solution algorithm" << std::endl;
break;
}
}
cpuClockTotal.stop();
// Display the results
this->totaltime_ = cpuClockTotal.getTime();
this->relaxtime_ = 0.0;
std::cout << std::endl;
std::cout << "revorder: ----------------------------------------------------------" << std::endl;
std::cout << "revorder: ----------------------------------------------------------" << std::endl;
std::cout << "\nmdjeep: Branch-and-bound solution report: " << std::endl;
if (isfeasible_) {
this->objvalue_ = this->primalbound_;
//
// the solution is optimal only if all the bb nodes have been treated
if (this->bbnodesqueue_.empty()) {
isoptimal_ = true;
std::cout << "revorder: the instance was solved to optimality" << std::endl;
}
else {
std::cout << "revorder: the branch-and-bound was stopped before proving optimality" << std::endl;
}
//
// reconstruct the solution by including the preallocated vertices
objvalue_ += this->inst_->preallocatedvertices_.size();
this->reconstructsolution();
//
// display the solution
std::cout << "revorder: total cpu time = " << cpuClockTotal.getTime() << " s" << std::endl;
std::cout << "revorder: initialization cpu time = " << cpuClockInit.getTime() << " s" << std::endl;
std::cout << "revorder: number of explored nodes = " << this->treatednodes_ << std::endl;
std::cout << "revorder: number of created nodes = " << this->bbnodes_ << std::endl;
std::cout << "revorder: value of the objective function = " << this->objvalue_ << " (after addition of preallocated vertices)" << std::endl;
//
// verify the resulting order is indeed a revorder
this->verifyorder(this->bestrank_);
}
else {
std::cout << "revorder: the instance is not discretizable!" << std::endl;
}
return isfeasible_;
}
//
// treat a branch-and-bound node (compute bounds and branch)
void BBSolver::treatnode(BBNode& node) {
this->treatednodes_++;
if (std::remainder(this->treatednodes_, 100) == 0) {
std::cout << "revorder: bb: treated nodes = " << this->treatednodes_ << ", nodes in the queue = " << this->bbnodesqueue_.size() << ", nodes in memory = " << this->nbactivenodes_ << ", primal bound = " << this->primalbound_ << std::endl;
}
//
// remove the bb node from the list
//
// make sure to maintain the heap first
if (this->isfeasible_) {
if (this->exploredepth_ ) {
std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
}
else if (this->explorebest_ || this->exploredepthbeforebest_) {
std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
}
}
else {
if (this->explorebest_) {
std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
}
else {
std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
}
}
//
// actually remove the node from the queue
this->bbnodesqueue_.pop_back();
//
// update the primal bound and prune the node if it is a leaf of the
// enumeration tree
if (node.nbordered() == this->inst_->nbvertices_) {
#ifdef VERBOSE
std::cout << "revorder: bb: reached a leaf at node " << node.id() << ": depth = " << node.depth();
#endif
node.primalbound_ = this->getobjvalue(node.rank_, node.nbrefs_);
//
// update the primal bound if improved
if (node.primalbound_ < this->primalbound_) {
//
// swap the search method if this is the first feasible solution
std::cout << "revorder: bb: the primal bound has been improved, value = " << node.primalbound_ << std::endl;
if (!this->isfeasible_) {
if (this->exploredepthbeforebest_) {
std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
}
this->isfeasible_ = true;
}
this->primalbound_ = node.primalbound_;
this->bestnbfullref_ = this->getnbfullref(node.rank_, node.nbrefs_);
for (Vertex* v : inst_->vertices_) {
this->bestrank_[v] = node.rank(v);
}
}
this->erasenodefromall(&node);
}
//
// otherwise, compute dual and primal bound and prepare for next node
else {
//
// prune the node if no potential child node
if (node.potentialchildren_.empty()) {
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node " << node.id() << ": ";
std::cout << ": no feasible solution on this branch" << std::endl;
#endif
//
this->erasenodefromall(&node);
}
else {
//
// compute a dual bound based on the ordered vertices
this->computedualbound(node);
//
// prune the node by using bounds
if (node.dualbound_ >= this->primalbound_) {
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node " << node.id() << ": ";
std::cout << "using bounds: primal = " << this->primalbound_;
std::cout << " ; dual = " << node.dualbound_ << std::endl;
#endif
//
this->erasenodefromall(&node);
}
//
// otherwise, create new nodes by branching
else {
this->branch(node);
node.istreated_ = true;
// if (!this->checkdominancealltree_) {
// this->erasenodefromall(&node);
// }
}
}
}
//
// treat next node in the queue
// since it is a heap, the front node is always the greatest in the implemented
// order
#ifdef VERBOSE
if (!this->bbnodesqueue_.empty()) {
BBNode* nextnode = this->bbnodesqueue_.front();
std::cout << '\n' << "revorder: bb: treat node " << nextnode->id() << " ; depth = " << nextnode->depth() << " ; ";
std::cout << nextnode->nbordered() << " ordered vertices ; " << nextnode->nbpartialref() << " partially referenced vertices" << std::endl;
}
#endif
// make_heap pour bien ranger les noeuds de branch-and-bound au fur et a mesure
}
//
// propagate an initial clique by iteratively adding the fully-referenced vertices until
// one is necessarily free
void BBSolver::branch(BBNode& node) {
//
// create the children of the input node
// propagate the order starting from each incomplete order to detect dominated
// orders
std::vector<BBNode*> childrennodes;
std::map<BBNode*, bool> isdominated;
std::map<Vertex*, bool> issymmetric;
//
// we start by checking diverse pruning rules that need to be applied before dominance
for (int i = 0; i < node.potentialchildren_.size() ; i++) {
Vertex* u = node.potentialchildren_[i];
issymmetric[u] = false;
if (! this->prunesameneighbors_) continue;
for (int j = 0; j < i; j++) {
Vertex* v = node.potentialchildren_[j];
if (issymmetric[v]) continue;
//
// if two vertices that can be chosen for branching have the exact same unordered neighbors, only that with smaller number of references needs to be considered for branching at this stage
bool sameneighbors = true;
for (Vertex* neighbor: u->neighbors_) {
if ( !node.isordered(neighbor) ) {
if ( !v->isneighbor_[neighbor] ) {
sameneighbors = false;
break;
}
}
}
if (sameneighbors) {
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node: two potential children have same neighbors: vertices " << u->id_ << " and " << v->id_ << std::endl;
#endif
//
if (node.nbrefs_[u] < node.nbrefs_[v]) issymmetric[v] = true;
else if (node.nbrefs_[v] < node.nbrefs_[u]) issymmetric[u] = true;
else {
if (u->id_ < v->id_) issymmetric[v] = true;
else if (v->id_ < u->id_) issymmetric[u] =true;
}
}
}
}
for (Vertex* v : node.potentialchildren_) {
if (issymmetric[v]) continue; // do not consider the vertices that are symmetric
BBNode* child = new BBNode(node);
//
// in MINPARTIAL, we can always make the arbitrary decision that if a vertex must be ordered when it is still partially referenced, then it is the vertex with smallest index among all the potential children; as a consequence the vertices with smaller index must be removed from the list of potential children
if ( this->branchonsmallerindex_ ) {
std::vector<Vertex*>::iterator itv = child->potentialchildren_.begin();
while (itv < child->potentialchildren_.end()) {
if ( ((*itv)->id_ < v->id_) ) {
child->ispotentialchild_[*itv] = false;
child->potentialchildren_.erase(itv);
child->mustbefullref_[*itv] = true;
//
// if a vertex must be fully-referenced, but it has exactly U neighbors, it will for sure come after all its neighbors in the order
if(child->maxrefs_[*itv] <= this->inst_->U()) {
for (Vertex* u: v->neighbors_) {
if (child->mustbefullref_[u]) {
if (child->maxrefs_[u] >= this->inst_->U()+1) {
child->maxrefs_[u]--;
}
}
else child->maxrefs_[u]--;
}
}
}
else itv++;
}
}
child->assignnextrank(v);
child->prepropagation();
isdominated[child] = false;
childrennodes.push_back(child);
}
//
// check for classical dominance
for (BBNode* n1 : childrennodes) {
if (!this->checkdominance_) continue; // do not check dominance if option is deactivated
if (isdominated[n1]) continue;
for (BBNode* n2 : childrennodes) {
if (n2 == n1) continue;
else if (isdominated[n2]) continue;
//
// classical dominance
else if (this->dominates(*n2,*n1)) {
isdominated[n1] = true;
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node: dominance among children" << std::endl;
#endif
break;
}
else if (this->dominates(*n1,*n2)) {
isdominated[n2] = true;
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node: dominance among children" << std::endl;
#endif
}
}
}
//
// scan all the bb nodes in the queue to delete the dominated ones if option is activated
if ( (this->checkdominancealltree_) && (this->checkdominance_)) {
for (BBNode* n : childrennodes) {
if (isdominated[n]) continue;
for (int deltacost = -this->maxdeltadominance_ ; deltacost <= this->maxdeltadominance_; deltacost++) {
if (n->cost_ <= deltacost) continue;
if (!isdominated[n]) {
isdominated[n] = checkdominancewithlist(n, this->activenodes_[n->cost_ - deltacost]);
}
}
}
}
//
// delete the redundant nodes and add the others to the node queue
for (BBNode* n : childrennodes) {
if (isdominated[n]) delete n;
//
// make sure to maintain the heap while pushing the new node in the queue
else {
this->bbnodes_++;
n->setid(this->bbnodes_);
node.addtochildren(n);
n->postpropagation();
this->bbnodesqueue_.push_back(n);
this->activenodes_[n->cost_].push_back(n);
this->nbactivenodes_++;
if (this->exploredepth_) {
std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
}
else if (this->explorebest_) {
std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
}
else if (this->exploredepthbeforebest_) {
if (!this->isfeasible_) {
std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare);
}
else {
std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare);
}
}
}
}
#ifdef VERBOSE
std::cout << "revorder: bb: " << this->bbnodesqueue_.size() << " nodes in the queue" << std::endl;
#endif
}
//
// check the dominance of input node with every node in the input vector
bool BBSolver::checkdominancewithlist(BBNode* n1, std::vector<BBNode*>& nodelist) {
std::vector<BBNode*>::iterator itnode = nodelist.begin();
while (itnode < nodelist.end()) {
BBNode* n2 = (*itnode);
if (this->dominates(*n2,*n1)) {
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node: dominance of potential child ";
if (n2->istreated_) std::cout << " with treated node" << std::endl;
else std::cout << "with queue " << std::endl;
std::cout << "revorder: bb: depth: dominant = " << n2->depth() << ", dominated = " << n1->depth() << std::endl;
std::cout << "revorder: bb: costs: dominant = " << n2->cost_ << ", dominated = " << n1->cost_ << std::endl;
#endif