/******************************************************************************************** Name: DiscretizationSolver Discrete optimization for graph discretization Author: J.Omer Sources: C++ License: GNU General Public License v.2 History: *********************************************************************************************/ #include "bbsolver.hpp" ILOSTLBEGIN // ILOLAZYCONSTRAINTCALLBACK2(CyclesLazyConstraintsBB, Instance &, inst, DiscretizationSolver&, solver) { #ifdef VERBOSE std::cout << "revorder: check lazy dicycle constraints" << std::endl; #endif // Search for cycles in the current solution digraph // // generate the adjacency lists of the vertices corresponding to the current // cplex solution float tolerance = 1e-06; std::map<Vertex*, std::vector<Vertex*> > adjlist; std::map<Vertex*, int > nbrefs; for (Vertex* v : inst.vertices_) { adjlist[v] = std::vector<Vertex*>(); nbrefs[v] = 0; } for (Vertex* u : inst.vertices_) { if (solver.modeltype_ == WITNESS) { if (getValue(solver.isvertexinclique(u) >= 1 - tolerance)) continue; } for (Vertex* v : u->neighbors_) { if (getValue(solver.isbefore(u, v)) >= 1 - tolerance) { adjlist[u].push_back(v); nbrefs[v]++; } } } // // search for the root of the digraph Vertex* root = nullptr; int minnbrefs = inst.U(); if (solver.modeltype_ == WITNESS) { for (Vertex* v : inst.vertices_) { if (getValue(solver.isvertexinclique(v) >= 1 - tolerance)) { root = v; break; } } } else { for (Vertex* v : inst.vertices_) { if (nbrefs[v] < minnbrefs) { minnbrefs = nbrefs[v]; root = v; break; } } } // // call the enumeration of cycles, returns false if there are none std::vector<std::vector<Vertex*> > cycles; bool iscyclic = solver.enumeratecycles(adjlist, root, cycles); // Look for dicycle inequalities : we restrict the search to the dicycles // that contain at least one edge in the distance graph // besides that, the search is performed using brute force int nbaddedcuts = 0; IloEnv env = getEnv(); if (iscyclic) { for (std::vector<Vertex*> path : cycles) { IloExpr sumedges(env); int cyclelength = path.size(); Vertex* u = path.back(); for (int i = 0; i < cyclelength; i++) { Vertex* v = path[i]; sumedges += solver.isbefore(u, v); u = v; } if ((solver.modeltype_ == WITNESS) && (cyclelength <= inst.L() + 1)) { add(sumedges - solver.isvertexinclique(path.front()) <= cyclelength - 1).end(); nbaddedcuts++; } else { add(sumedges <= cyclelength - 1).end(); nbaddedcuts++; } } #ifdef VERBOSE std::cout << "revorder: number of violated dicycle constraints : " << nbaddedcuts << std::endl; #endif } else { #ifdef VERBOSE std::cout << "revorder: the graph is acyclic " << std::endl; #endif } return; } /*************************************************************************************************************************************************************/ // // sort the nodes by ascending number of ordered vertices bool bbnodesnborderedcompare(BBNode* n1, BBNode* n2) { return (n1->nbordered() < n2->nbordered()); } bool bbnodesbestcompare(BBNode*n1, BBNode* n2) { return ((float) n1->cost_ / n1->nbordered() > (float) n2->cost_ / n2->nbordered()); } // Public methods // // constructor and destructor // // constructor used only for the root BBNode::BBNode(Instance& inst): depth_(0), inst_(&inst), nbordered_(0), nbfullref_(0), istreated_(true) {} // // constructor used only for the initial cliques BBNode::BBNode(Instance& inst, BBNode* root, Clique& c, bool branchonsmallerindex): depth_(1), father_(root), inst_(&inst), nbordered_(0), nbfullref_(0), istreated_(false) { this->orderedvertices_.clear(); for (Vertex* v : inst.vertices_) { this->rank_[v] = -1; this->nbrefs_[v] = 0; this->isfullref_[v] = false; this->isordered_[v] = false; this->ispotentialchild_[v] = false; this->mustbefullref_[v] = false; this->maxrefs_[v] = v->degree_; } int currentrank = 1; for (Vertex* u : c.vertices_) { this->rank_[u] = currentrank++; this->orderedvertices_.push_back(u); this->switchtoordered(u); this->nbordered_++; // // update the number of references of the neighbors of the vertex for (Vertex* v : u->neighbors_) { if (!this->isordered_[v]) { this->nbrefs_[v]++; } } } // // record the list of partially and fully referenced (unordered) vertices for (Vertex* v: inst.vertices_) { if (!this->isordered_[v]) { // // record the list of unordered fully-referenced vertices if (this->nbrefs_[v] >= inst.U()) { this->isfullref_[v] = true; this->fullrefs_.push_back(v); } // // add partially referenced vertices to the list of potential choices for branching else if (this->nbrefs_[v] >= inst.L()) { if (branchonsmallerindex) { bool largerindex = true; Vertex* u = c.vertices_.back(); if (!u->isneighbor(v)) { if (u->id_ >= v->id_) largerindex = false; } // // to break symmetries, make sure that the chosen potential child is always that with biggest index if (largerindex) { this->ispotentialchild_[v] = true; this->potentialchildren_.push_back(v); // // partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced if (this->maxrefs_[v] <= inst.U() - 1) { this->readytoorder_.push_back(v); #ifdef VERBOSE std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl; #endif } } else { this->mustbefullref_[v] = true; // // if a vertex must be fully-referenced, but it has exactly U neighbors, it will for sure come after all its neighbors in the order if(this->maxrefs_[v] <= inst.U()) { for (Vertex* u: v->neighbors_) { if (this->mustbefullref_[u]) { if (this->maxrefs_[u] >= inst.U()+1) { this->maxrefs_[u]--; } } else this->maxrefs_[u]--; } } } } else { this->ispotentialchild_[v] = true; this->potentialchildren_.push_back(v); // // partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced if (this->maxrefs_[v] <= inst.U() - 1) { this->readytoorder_.push_back(v); #ifdef VERBOSE std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl; #endif } } } } } this->dualbound_ = -1; root->addtochildren(this); } // // Make a copy of the input BB node: used for every other node BBNode::BBNode(BBNode& node): id_(node.id_), depth_(node.depth_+1), father_(&node), inst_(node.inst_), nbordered_(node.nbordered_), nbfullref_(node.nbfullref_), istreated_(false){ cost_ = node.cost_; dualbound_ = node.dualbound_; primalbound_ = node.primalbound_; for (Vertex* v : inst_->vertices_) { rank_[v] = node.rank_.at(v); isordered_[v] = node.isordered_.at(v); nbrefs_[v] = node.nbrefs_.at(v); isfullref_[v] = node.isfullref_.at(v); ispotentialchild_[v] = node.ispotentialchild_.at(v); mustbefullref_[v] = node.mustbefullref_.at(v); maxrefs_[v] = node.maxrefs_.at(v); } fullrefs_.clear(); orderedvertices_.clear(); potentialchildren_.clear(); children_.clear(); for (Vertex* v: node.readytoorder_) readytoorder_.push_back(v); for (Vertex* v : node.fullrefs_) fullrefs_.push_back(v); for (Vertex* v : node.orderedvertices_) orderedvertices_.push_back(v); for (Vertex* v : node.potentialchildren_) potentialchildren_.push_back(v); } // // Destroy the node BBNode::~BBNode() { } // // remove a vertex from the list of potential choice for branching void BBNode::removefrompotentialchildren(Vertex* v) { // // no need to proceed if the vertex is not marked as potential child if (!this->ispotentialchild_[v]) return; this->ispotentialchild_[v] = false; std::vector<Vertex*>::iterator itv = this->potentialchildren_.begin(); while (itv < this->potentialchildren_.end()) { if (*itv == v) { this->potentialchildren_.erase(itv); break; } else { itv++; // // detect error if the vertex was not found in the list of potential children if (itv == this->potentialchildren_.end()) { std::cout << "revorder: bb: did not find a potential child in the list" << '\n'; throw; } } } itv = this->readytoorder_.begin(); while (itv < this->readytoorder_.end()) { if (*itv == v) { this->readytoorder_.erase(itv); break; } itv++; } } // // assign the next available rank to the input vertex void BBNode::assignnextrank(Vertex* u) { // // assign the next available rank for (Vertex* v: this->orderedvertices_) { if (u == v) { std::cout << "Les ennuis commencent ici." << std::endl; } } this->rank_[u] = this->nbordered_ + 1; this->orderedvertices_.push_back(u); this->switchtoordered(u); this->nbordered_++; this->removefrompotentialchildren(u); if (this->nbrefs_[u] <= this->inst_->L() - 1) { std::cout << "revorder: bb: trying to assign a rank to a vertex with less than L references" << '\n'; throw; } else if (this->nbrefs_[u] >= this->inst_->U()) { this->nbfullref_++; } // // update the number of references of the neighbors of v for (Vertex* v : u->neighbors_) { if (this->rank_[v] < 0) { this->nbrefs_[v]++; // // add partially-referenced vertices to the list of potential choices for branching if (this->nbrefs_[v] == this->inst_->L()) { this->potentialchildren_.push_back(v); this->ispotentialchild_[v] = true; // // partially referenced vertices with less than U neighbors can be ordered right away since they will never be fully referenced if (this->maxrefs_[v] <= this->inst_->U() - 1) { this->readytoorder_.push_back(v); #ifdef VERBOSE std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl; #endif } } // // vertex is fully-referenced if it has more than U references, and it is not a potential choice for branching anymore if (this->nbrefs_[v] == this->inst_->U()) { this->isfullref_[v] = true; this->fullrefs_.push_back(v); if (this->ispotentialchild_[v]) this->removefrompotentialchildren(v); } } } } // // get the current objective value at a node, depending on the ordered vertices void BBNode::setnodecost(Problem pb) { int nbpartials = 0; for (Vertex* u: this->inst_->vertices_) { if (this->isordered_[u]) { if (this->nbrefs_[u] <= this->inst_->U() - 1) nbpartials += 1; } } this->cost_ = nbpartials; } // // a bb node n1 dominates another one, n2, if the corresponding partial solution has a smaller or equal cost but its list of ordered vertices contains that of n2 bool BBSolver::dominates(BBNode& n1, BBNode& n2) { if ( n2.cost_ < n1.cost_ ) { return false; } for (Vertex* v : n2.orderedvertices_) { if (!(n1.isordered(v))) { return false; } } return true; } // // propagate the set of ordered vertices by iteratively ordering fully-referenced vertices void BBNode::prepropagation() { #ifdef VERBOSE cout << "prepropagation" << endl; #endif // iteratively propagate while there are fully-referenced vertices while (!this->fullrefs_.empty()) { Vertex* u = this->fullrefs_.back(); this->fullrefs_.pop_back(); this->isfullref_[u] = false; this->assignnextrank(u); } this->setnodecost(MINPARTIAL); } // // propagate the set of ordered vertices by iteratively ordering vertices // as long as there is either at least one unordered vertex with more than three // references or exactly one unordered vertex with exactly three references void BBNode::postpropagation() { #ifdef VERBOSE cout << "in postpropagation" << endl; #endif // // no need of propagation if all the vertices are ordered if (this->nbordered_ == this->inst_->nbvertices_) return; // // iteratively propagate while there are fully-referenced vertices or exactly one partially-referenced vertex while (true) { bool ispropagate = false; Vertex* u; // // add a vertex with more than U references if (!this->fullrefs_.empty()) { u = this->fullrefs_.back(); this->fullrefs_.pop_back(); this->isfullref_[u] = false; ispropagate = true; } // // if there is a partially referenced vertex with less than U neighbors, it can be ordered right away: it will never be fully referenced else if (!this->readytoorder_.empty()) { u = this->readytoorder_.back(); this->readytoorder_.pop_back(); ispropagate = true; } // // if there is exactly one partially referenced vertex: add it to the order else if (this->potentialchildren_.size() == 1) { u = this->potentialchildren_.back(); this->potentialchildren_.pop_back(); this->ispotentialchild_[u] = false; ispropagate = true; } if (!ispropagate) break; // // add the identified vertex at the end of the order this->assignnextrank(u); } // // update the cost of the node this->setnodecost(MINPARTIAL); } /******************************************************************************* Class BBSolver - an instance of BBSolver is a solver of the discretization problem using branch-and-bound *******************************************************************************/ // Public methods // // constructor and destructor BBSolver::BBSolver(Instance* inst, Problem pb, std::string optionfile, float timelimit): DiscretizationSolver(inst, BRANCHANDBOUND, pb, NONE, optionfile, timelimit) { this->isfeasible_ = false; this->isoptimal_ = false; this->bbnodes_ = 1; this->treatednodes_ = 0; this->nbactivenodes_ = 0; this->primalbound_ = inst->nbvertices_; if (!optionfile.empty()) { std::ifstream infile(optionfile.c_str()); if (!infile.is_open()) { throwError("revorder: error: the option file could not be opened"); } // read the file line by line // one line contains the data relative to one option std::string line; while (std::getline(infile, line)) { std::istringstream iss(line); std::string optionname; char buf[100]; int optionvalue; std::string optionstring; //read the line and detect format errors if (!(iss >> buf)){ std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl; throw; } // error optionname = std::string(buf); if (optionname.find("relaxmodel") != std::string::npos) { if (!(iss >> buf)){ std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl; throw; } optionstring = std::string(buf); if (!strcmp(optionstring.c_str(),"ccg")) { this->modeltype_ = CCG; } else if (!strcmp(optionstring.c_str(),"cycles")) { this->modeltype_ = CYCLES; } else if (!strcmp(optionstring.c_str(),"ranks")) { this->modeltype_ = RANKS; } else if (!strcmp(optionstring.c_str(),"vertexrank")) { this->modeltype_ = VERTEXRANK; } else if (!strcmp(optionstring.c_str(),"witness")) { this->modeltype_ = WITNESS; } continue; } if (!(iss >> optionvalue)){ std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl; throw; } // error // if (optionname.find("branchonsmallerindex") !=std::string::npos) { branchonsmallerindex_ = (bool) optionvalue; continue; } else if (optionname.find("prunesameneighbors") !=std::string::npos) { prunesameneighbors_ = (bool) optionvalue; continue; } else if (optionname.find("checkdominance") !=std::string::npos) { if (optionname.find("checkdominancealltree") !=std::string::npos) { checkdominancealltree_ = (bool) optionvalue; continue; } checkdominance_ = (bool) optionvalue; continue; } else if (optionname.find("maxdeltadominance") !=std::string::npos) { maxdeltadominance_ = optionvalue; continue; } else if (optionname.find("improvedualbound") !=std::string::npos) { improvedualbound_ = (bool) optionvalue; continue; } else if (optionname.find("userelaxbound") !=std::string::npos) { userelaxbound_ = (bool) optionvalue; continue; } else if (optionname.find("explorebest") !=std::string::npos) { explorebest_ = (bool) optionvalue; continue; } else if (optionname.find("exploredepth") !=std::string::npos) { if (optionname.find("exploredepthbeforebest") !=std::string::npos) { exploredepthbeforebest_ = (bool) optionvalue; continue; } exploredepth_ = (bool) optionvalue; continue; } } } else { // // set some parameters for the solution of the relaxation in dual bounds // computations this->modeltype_ = CCG; this->branchonsmallerindex_ = true; this->prunesameneighbors_ = true; this->checkdominance_ = true; this->checkdominancealltree_ = true; this->maxdeltadominance_ = 1; this->improvedualbound_ = false; this->userelaxbound_ = false; this->explorebest_ = false; this->exploredepth_ = false; this->exploredepthbeforebest_ = true; } // // build a root node this->rootnode_ = new BBNode(*inst); } // BBSolver::~BBSolver() { cplexrelax_.end(); relax_.end(); env_.end(); cplexdual_.end(); modeldual_.end(); envdual_.end(); delete rootnode_; } // // main method : called to run the branch-and-bound algorithm int BBSolver::solve() { // // run timer IloTimer cpuClockTotal(this->env_); IloTimer cpuClockInit(this->env_); cpuClockTotal.start(); cpuClockInit.start(); std::cout << std::endl; std::cout << "revorder: ----------------------------------------------------------" << std::endl; std::cout << "\nrevorder: bb: Run preprocessing procedures " << std::endl << std::endl; // // try and reduce the size of the instance right from the beginnning this->inst_->computeneighbors(); this->preallocatelowdegreevertices(); // // enumerate the potential initial cliques if (!this->enumeratecliques(this->inst_->L() + 1)) { this->isfeasible_ = false; return false; } // // eliminate the redundant and dominated cliques this->eliminateredundantcliques(); // // solve with greedy and remove cliques that cannot be completed this->isfeasible_ = this->greedysolve(); if (!this->isfeasible_) return false; // // initialize the clique nodes for (Clique* c : this->cliques_) { BBNode* cliquenode =new BBNode(*inst_, rootnode_, *c, this->branchonsmallerindex_); this->bbnodesqueue_.push_back(cliquenode); cliquenode->primalbound_ = c->greedyobjvalue_; cliquenode->setid(this->bbnodes_); cliquenode->setnodecost(this->problem_); cliquenode->prepropagation(); cliquenode->postpropagation(); this->activenodes_[cliquenode->cost_].push_back(cliquenode); this->nbactivenodes_++; // // first propagate the partial order this->bbnodes_++; } std::cout << "revorder: bb: preprocessing created " << this->bbnodesqueue_.size() << " initial clique nodes" << std::endl; // // sort the bb nodes according to the choice of exploration method if (this->exploredepth_ || this->exploredepthbeforebest_) { std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare); } else if (this->explorebest_){ std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare); } else { std::cout << "revorder: bb: need to choose an exploration method in branch-and-bound" << std::endl; throw; } // #ifdef VERBOSE std::cout << "revorder: bb: greatest number of ordered vertices in a clique: "; std::cout << ", " << this->bbnodesqueue_.front()->nbordered() << " vertices" << std::endl; #endif // // compute sets of vertices that must contain at least one partially-referenced vertex this->computecliquecuts(this->cliquecutsmaxsize_); // // identify cycle of vertices with degree smaller than U+1: in each of these cycles, at least one vertex is partially referenced this->enumeratelowdegreecycles(); // // initialize the IP used for improved dual bound this->initializedualboundIP(); // // set greedy solution as initial primal bound this->primalbound_ = this->objvalue_; // cpuClockInit.stop(); // Run the branch-and-bound algorithm // // initialize the ip model to find dual bounds using the linear relaxation // IloModel model(this->env_); this->relax_ = IloModel(this->env_); // this->defineminpartialip(model); if (userelaxbound_) { // this->createrelaxationmodel(model, this->relax_); this->defineminpartialip(this->relax_); this->cplexrelax_ = IloCplex(this->env_); this->cplexrelax_.extract(this->relax_); } // // treat std::cout << std::endl; std::cout << "revorder: ----------------------------------------------------------" << std::endl; std::cout << "\nrevorder: bb: Start the B&B algorithm " << std::endl << std::endl; while (!this->bbnodesqueue_.empty()) { this->treatnode(*(this->bbnodesqueue_.front())); if (cpuClockTotal.getTime() > this->timelimit_) { std::cout << "revorder: bb: time limit has been reached, stop the solution algorithm" << std::endl; break; } } cpuClockTotal.stop(); // Display the results this->totaltime_ = cpuClockTotal.getTime(); this->relaxtime_ = 0.0; std::cout << std::endl; std::cout << "revorder: ----------------------------------------------------------" << std::endl; std::cout << "revorder: ----------------------------------------------------------" << std::endl; std::cout << "\nmdjeep: Branch-and-bound solution report: " << std::endl; if (isfeasible_) { this->objvalue_ = this->primalbound_; // // the solution is optimal only if all the bb nodes have been treated if (this->bbnodesqueue_.empty()) { isoptimal_ = true; std::cout << "revorder: the instance was solved to optimality" << std::endl; } else { std::cout << "revorder: the branch-and-bound was stopped before proving optimality" << std::endl; } // // reconstruct the solution by including the preallocated vertices objvalue_ += this->inst_->preallocatedvertices_.size(); this->reconstructsolution(); // // display the solution std::cout << "revorder: total cpu time = " << cpuClockTotal.getTime() << " s" << std::endl; std::cout << "revorder: initialization cpu time = " << cpuClockInit.getTime() << " s" << std::endl; std::cout << "revorder: number of explored nodes = " << this->treatednodes_ << std::endl; std::cout << "revorder: number of created nodes = " << this->bbnodes_ << std::endl; std::cout << "revorder: value of the objective function = " << this->objvalue_ << " (after addition of preallocated vertices)" << std::endl; // // verify the resulting order is indeed a revorder this->verifyorder(this->bestrank_); } else { std::cout << "revorder: the instance is not discretizable!" << std::endl; } return isfeasible_; } // // treat a branch-and-bound node (compute bounds and branch) void BBSolver::treatnode(BBNode& node) { this->treatednodes_++; if (std::remainder(this->treatednodes_, 100) == 0) { std::cout << "revorder: bb: treated nodes = " << this->treatednodes_ << ", nodes in the queue = " << this->bbnodesqueue_.size() << ", nodes in memory = " << this->nbactivenodes_ << ", primal bound = " << this->primalbound_ << std::endl; } // // remove the bb node from the list // // make sure to maintain the heap first if (this->isfeasible_) { if (this->exploredepth_ ) { std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare); } else if (this->explorebest_ || this->exploredepthbeforebest_) { std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare); } } else { if (this->explorebest_) { std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare); } else { std::pop_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare); } } // // actually remove the node from the queue this->bbnodesqueue_.pop_back(); // // update the primal bound and prune the node if it is a leaf of the // enumeration tree if (node.nbordered() == this->inst_->nbvertices_) { #ifdef VERBOSE std::cout << "revorder: bb: reached a leaf at node " << node.id() << ": depth = " << node.depth(); #endif node.primalbound_ = this->getobjvalue(node.rank_, node.nbrefs_); // // update the primal bound if improved if (node.primalbound_ < this->primalbound_) { // // swap the search method if this is the first feasible solution std::cout << "revorder: bb: the primal bound has been improved, value = " << node.primalbound_ << std::endl; if (!this->isfeasible_) { if (this->exploredepthbeforebest_) { std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare); } this->isfeasible_ = true; } this->primalbound_ = node.primalbound_; this->bestnbfullref_ = this->getnbfullref(node.rank_, node.nbrefs_); for (Vertex* v : inst_->vertices_) { this->bestrank_[v] = node.rank(v); } } this->erasenodefromall(&node); } // // otherwise, compute dual and primal bound and prepare for next node else { // // prune the node if no potential child node if (node.potentialchildren_.empty()) { // #ifdef VERBOSE std::cout << "revorder: bb: prune node " << node.id() << ": "; std::cout << ": no feasible solution on this branch" << std::endl; #endif // this->erasenodefromall(&node); } else { // // compute a dual bound based on the ordered vertices this->computedualbound(node); // // prune the node by using bounds if (node.dualbound_ >= this->primalbound_) { // #ifdef VERBOSE std::cout << "revorder: bb: prune node " << node.id() << ": "; std::cout << "using bounds: primal = " << this->primalbound_; std::cout << " ; dual = " << node.dualbound_ << std::endl; #endif // this->erasenodefromall(&node); } // // otherwise, create new nodes by branching else { this->branch(node); node.istreated_ = true; // if (!this->checkdominancealltree_) { // this->erasenodefromall(&node); // } } } } // // treat next node in the queue // since it is a heap, the front node is always the greatest in the implemented // order #ifdef VERBOSE if (!this->bbnodesqueue_.empty()) { BBNode* nextnode = this->bbnodesqueue_.front(); std::cout << '\n' << "revorder: bb: treat node " << nextnode->id() << " ; depth = " << nextnode->depth() << " ; "; std::cout << nextnode->nbordered() << " ordered vertices ; " << nextnode->nbpartialref() << " partially referenced vertices" << std::endl; } #endif // make_heap pour bien ranger les noeuds de branch-and-bound au fur et a mesure } // // propagate an initial clique by iteratively adding the fully-referenced vertices until // one is necessarily free void BBSolver::branch(BBNode& node) { // // create the children of the input node // propagate the order starting from each incomplete order to detect dominated // orders std::vector<BBNode*> childrennodes; std::map<BBNode*, bool> isdominated; std::map<Vertex*, bool> issymmetric; // // we start by checking diverse pruning rules that need to be applied before dominance for (int i = 0; i < node.potentialchildren_.size() ; i++) { Vertex* u = node.potentialchildren_[i]; issymmetric[u] = false; if (! this->prunesameneighbors_) continue; for (int j = 0; j < i; j++) { Vertex* v = node.potentialchildren_[j]; if (issymmetric[v]) continue; // // if two vertices that can be chosen for branching have the exact same unordered neighbors, only that with smaller number of references needs to be considered for branching at this stage bool sameneighbors = true; for (Vertex* neighbor: u->neighbors_) { if ( !node.isordered(neighbor) ) { if ( !v->isneighbor_[neighbor] ) { sameneighbors = false; break; } } } if (sameneighbors) { // #ifdef VERBOSE std::cout << "revorder: bb: prune node: two potential children have same neighbors: vertices " << u->id_ << " and " << v->id_ << std::endl; #endif // if (node.nbrefs_[u] < node.nbrefs_[v]) issymmetric[v] = true; else if (node.nbrefs_[v] < node.nbrefs_[u]) issymmetric[u] = true; else { if (u->id_ < v->id_) issymmetric[v] = true; else if (v->id_ < u->id_) issymmetric[u] =true; } } } } for (Vertex* v : node.potentialchildren_) { if (issymmetric[v]) continue; // do not consider the vertices that are symmetric BBNode* child = new BBNode(node); // // in MINPARTIAL, we can always make the arbitrary decision that if a vertex must be ordered when it is still partially referenced, then it is the vertex with smallest index among all the potential children; as a consequence the vertices with smaller index must be removed from the list of potential children if ( this->branchonsmallerindex_ ) { std::vector<Vertex*>::iterator itv = child->potentialchildren_.begin(); while (itv < child->potentialchildren_.end()) { if ( ((*itv)->id_ < v->id_) ) { child->ispotentialchild_[*itv] = false; child->potentialchildren_.erase(itv); child->mustbefullref_[*itv] = true; // // if a vertex must be fully-referenced, but it has exactly U neighbors, it will for sure come after all its neighbors in the order if(child->maxrefs_[*itv] <= this->inst_->U()) { for (Vertex* u: v->neighbors_) { if (child->mustbefullref_[u]) { if (child->maxrefs_[u] >= this->inst_->U()+1) { child->maxrefs_[u]--; } } else child->maxrefs_[u]--; } } } else itv++; } } child->assignnextrank(v); child->prepropagation(); isdominated[child] = false; childrennodes.push_back(child); } // // check for classical dominance for (BBNode* n1 : childrennodes) { if (!this->checkdominance_) continue; // do not check dominance if option is deactivated if (isdominated[n1]) continue; for (BBNode* n2 : childrennodes) { if (n2 == n1) continue; else if (isdominated[n2]) continue; // // classical dominance else if (this->dominates(*n2,*n1)) { isdominated[n1] = true; // #ifdef VERBOSE std::cout << "revorder: bb: prune node: dominance among children" << std::endl; #endif break; } else if (this->dominates(*n1,*n2)) { isdominated[n2] = true; // #ifdef VERBOSE std::cout << "revorder: bb: prune node: dominance among children" << std::endl; #endif } } } // // scan all the bb nodes in the queue to delete the dominated ones if option is activated if ( (this->checkdominancealltree_) && (this->checkdominance_)) { for (BBNode* n : childrennodes) { if (isdominated[n]) continue; for (int deltacost = -this->maxdeltadominance_ ; deltacost <= this->maxdeltadominance_; deltacost++) { if (n->cost_ <= deltacost) continue; if (!isdominated[n]) { isdominated[n] = checkdominancewithlist(n, this->activenodes_[n->cost_ - deltacost]); } } } } // // delete the redundant nodes and add the others to the node queue for (BBNode* n : childrennodes) { if (isdominated[n]) delete n; // // make sure to maintain the heap while pushing the new node in the queue else { this->bbnodes_++; n->setid(this->bbnodes_); node.addtochildren(n); n->postpropagation(); this->bbnodesqueue_.push_back(n); this->activenodes_[n->cost_].push_back(n); this->nbactivenodes_++; if (this->exploredepth_) { std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare); } else if (this->explorebest_) { std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare); } else if (this->exploredepthbeforebest_) { if (!this->isfeasible_) { std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesnborderedcompare); } else { std::push_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(), bbnodesbestcompare); } } } } #ifdef VERBOSE std::cout << "revorder: bb: " << this->bbnodesqueue_.size() << " nodes in the queue" << std::endl; #endif } // // check the dominance of input node with every node in the input vector bool BBSolver::checkdominancewithlist(BBNode* n1, std::vector<BBNode*>& nodelist) { std::vector<BBNode*>::iterator itnode = nodelist.begin(); while (itnode < nodelist.end()) { BBNode* n2 = (*itnode); if (this->dominates(*n2,*n1)) { // #ifdef VERBOSE std::cout << "revorder: bb: prune node: dominance of potential child "; if (n2->istreated_) std::cout << " with treated node" << std::endl; else std::cout << "with queue " << std::endl; std::cout << "revorder: bb: depth: dominant = " << n2->depth() << ", dominated = " << n1->depth() << std::endl; std::cout << "revorder: bb: costs: dominant = " << n2->cost_ << ", dominated = " << n1->cost_ << std::endl; #endif // return true; } else if (this->dominates(*n1,*n2)) { // #ifdef VERBOSE std::cout << "revorder: bb: prune node: dominance of created node "; if (n2->istreated_) std::cout << " already treated" << std::endl; else std::cout << "still in queue" << std::endl; std::cout << "revorder: bb: depth: dominant = " << n1->depth() << ", dominated = " << n2->depth() << std::endl; std::cout << "revorder: bb: costs: dominant = " << n1->cost_ << ", dominated = " << n2->cost_ << std::endl; #endif // erasenodefromall(*itnode); } else itnode++; } return false; } // // erase a node from every list where it appears void BBSolver::erasenodefromall(BBNode* node) { // // first erase it from the list of children of its father for (auto itn = node->getfather()->children_.begin(); itn < node->getfather()->children_.end(); itn++) { if (*itn == node) { node->getfather()->children_.erase(itn); break; } } // // then erase its descendants if any for (BBNode* child: node->children_) { this->erasealldescendants(child); } // // erase from active nodes for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) { if (*itn == node) { activenodes_[node->cost_].erase(itn); this->nbactivenodes_--; break; } } if (!node->istreated_) { for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) { if (*itn == node) { bbnodesqueue_.erase(itn); break; } } } delete node; } // // erase all the descendants of a node from all list of nodes and delete them void BBSolver::erasealldescendants(BBNode* node) { for (BBNode* child: node->children_) { erasealldescendants(child); } for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) { if (*itn == node) { activenodes_[node->cost_].erase(itn); this->nbactivenodes_--; break; } } if (!node->istreated_) { for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) { if (*itn == node) { bbnodesqueue_.erase(itn); break; } } } delete node; } // // compute a dual bound from the partial order described in the input node double BBSolver::computedualbound(BBNode& node) { // // compute a simple bound by just looking at the ordered vertices // // first get the number of partially referenced vertices in the order int nbpartials = node.nbordered() - node.nbfullref() - this->inst_->L(); // // then aknowledge that vertices with less than U neighbors cannot be fully-referenced; but beware that we know that one potential child will be partially-referenced, so do not count it twice int nbpotentialpartials = 1; for (Vertex* v: this->inst_->vertices_) { if (!node.isordered(v)) { if (v->degree_ <= this->inst_->U() - 1) { if (node.ispotentialchild_[v]) { nbpartials++; nbpotentialpartials = 0; } else{ nbpartials++; } } } } // // finally for each edge linking two vertices with exactly U neigbors, one will be partially referenced; still need to beware with the potential children of the node std::map<Vertex*,bool> inpartialedge; for (Vertex* u: this->inst_->vertices_) inpartialedge[u] = false; for (Vertex* u: this->inst_->vertices_) { if (!node.isordered(u) && (!inpartialedge[u]) && (u->degree_ == this->inst_->U())) { for (Vertex* v: u->neighbors_) { if (!node.isordered(v) && (!inpartialedge[v]) && (v->degree_ == this->inst_->U())) { nbpartials++; inpartialedge[u] = true; inpartialedge[v] = true; if (node.ispotentialchild_[v]) nbpotentialpartials = 0; break; } } } } nbpartials += nbpotentialpartials; int trivialbound = nbpartials; // // update current dual bound if improved node.dualbound_ = std::max(node.dualbound_, trivialbound); if ((!this->improvedualbound_) && (!this->userelaxbound_) ) { return node.dualbound_; } ///////////////////////////////////////////////////////////////////////////// // Improve the trivial bound by considering several cuts ///////////////////////////////////////////////////////////////////////////// if (this->improvedualbound_) { for (Vertex* v : this->inst_->vertices_) { if (node.isordered(v)) { if (node.nbrefs(v) >= this->inst_->U()) { this->ispartial_[v].setBounds(0, 0); } else { this->ispartial_[v].setBounds(1,1); } } else if (node.mustbefullref_[v]) { this->ispartial_[v].setBounds(0, 0); } else if (v->degree_ <= this->inst_->U() - 1) { this->ispartial_[v].setBounds(1,1); } else { this->ispartial_[v].setBounds(0, 1); } } // // at least one among the potential children will be partially referenced IloExpr sumpartialinpotentials(this->envdual_); for (Vertex* v : node.potentialchildren_) { sumpartialinpotentials += this->ispartial_[v]; } IloRange ctPartialsInPotentials(this->envdual_, -sumpartialinpotentials, -1); this->modeldual_.add(ctPartialsInPotentials); sumpartialinpotentials.end(); // // solve the IP this->cplexdual_.solve(); IloAlgorithm::Status statusimproved = this->cplexdual_.getStatus(); int improvedbound = this->inst_->nbvertices_; if (statusimproved==IloAlgorithm::Infeasible) { node.dualbound_ = this->inst_->nbvertices_; #ifdef VERBOSE std::cout << "revorder: bb: improved dual bound IP is infeasible: prune the node" << std::endl; #endif } else { improvedbound = ceil(this->cplexdual_.getObjValue()) - this->inst_->L(); if (improvedbound > node.dualbound_ ){ node.dualbound_ = improvedbound; } } this->modeldual_.remove(ctPartialsInPotentials); ctPartialsInPotentials.end(); #ifdef VERBOSE std::cout << "revorder: node dual bound = " << improvedbound << " ; trivialbound = " << trivialbound << std::endl; #endif } ///////////////////////////////////////////////////////////////////////////// // Compute a dual bound by solving the LP relaxation of a chosen model ///////////////////////////////////////////////////////////////////////////// // Start searching for better bounds only if trivial bound is not too far from primal bound and a significant number of nodes have been treated to improve primal bound if ( (this->userelaxbound_) && (this->treatednodes_ >= 1000) && (trivialbound * 2.0 >= this->primalbound_)) { // fix all the variables related to the vertices that already in the current incomplete order for (Vertex* v1 : this->inst_->vertices_) { if (node.rank(v1) >= this->inst_->L() + 2) { if (node.nbrefs(v1) >= this->inst_->U()) { isfullref_[v1].setBounds(1, 1); } else { isfullref_[v1].setBounds(0, 0); } } else if ((node.rank(v1) >= 1) && (node.rank(v1) <= this->inst_->L()+1)) { isfullref_[v1].setBounds(1, 1); } else { if (node.mustbefullref_[v1] == true) { isfullref_[v1].setBounds(1,1); } else { isfullref_[v1].setBounds(0, 1); } } for (Vertex* v2 : v1->neighbors_) { if ((node.rank(v1) < 0) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(0, 1); else if ( (node.rank(v1) < 0) && (node.rank(v2) >= 1)) isbefore_[v1][v2].setBounds(0, 0); else if ((node.rank(v1) >= 1) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(1, 1); else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) < node.rank(v2)) ) isbefore_[v1][v2].setBounds(1, 1); else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) > node.rank(v2)) ) isbefore_[v1][v2].setBounds(0, 0); else { cout << node.rank(v1) << "; " << node.rank(v2) << endl; throwError("abnormal rank values"); } } } IloExpr sumnotallfullref(this->env_); int maxnbfullref; for (Vertex* v : node.potentialchildren_) { sumnotallfullref += isfullref_[v]; } maxnbfullref = node.potentialchildren_.size() - 1; IloRange cons(this->env_, sumnotallfullref, maxnbfullref); relax_.add(cons); cplexrelax_.setParam(IloCplex::SimDisplay, 0); // cplexrelax_.setParam(IloCplex::Param::ParamDisplay, 0); cplexrelax_.setParam(IloCplex::Threads, 1); cplexrelax_.setParam(IloCplex::MIPDisplay, 0); cplexrelax_.setParam(IloCplex::TuningDisplay, 0); cplexrelax_.setOut(cplexrelax_.getEnv().getNullStream()); bool updateprimal_ = false; if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) { cplexrelax_.setParam(IloCplex::NodeLim, 9223372036800000000); cplexrelax_.setParam(IloCplex::MIPSearch, 1); if ((this->modeltype_ == CCG) || (this->modeltype_ == WITNESS)) { cplexrelax_.use(CyclesLazyConstraintsBB(cplexrelax_.getEnv(), *(this->inst_), *this)); } } else { cplexrelax_.setParam(IloCplex::NodeLim, 0); } cplexrelax_.solve(); IloAlgorithm::Status status = cplexrelax_.getStatus(); // // if the relaxation is infeasible, the node can be pruned : set dual bound to negative value to state this if (status != IloAlgorithm::Infeasible) { int relaxbound = ceil(cplexrelax_.getBestObjValue()); // #ifdef VERBOSE std::cout << "revorder: bb: trivial dual bound = " << trivialbound << " ; relaxation bound = " << relaxbound; std::cout << " (best primal bound = " << this->primalbound_ << ")" << std::endl; #endif if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) { if (relaxbound < this->primalbound_) { this->primalbound_ = relaxbound; std::cout << "best primal bound updated = " << this->primalbound_ << std::endl; this->bestnbfullref_ = this->inst_->nbvertices_ - this->primalbound_; float tolerance = 1e-06; std::map<Vertex*, std::vector<Vertex*> > adjlist; for (Vertex* v : this->inst_->vertices_) { adjlist[v] = std::vector<Vertex*>(); } for (Vertex* u : this->inst_->vertices_) { for (Vertex* v : u->neighbors_) { if (cplexrelax_.getValue(this->isbefore_[u][v]) >= 1 - tolerance) { adjlist[u].push_back(v); } } } // // search for the root of the digraph Vertex* root = nullptr; for (Vertex* v : this->inst_->vertices_) { if (node.rank(v) == 1) { root = v; } } // Search for a topological order that will be valid only if the digraph is // acyclic std::vector<Vertex*> reverseorder; std::map<Vertex*, int> rank; this->topologicalorder(root, adjlist, reverseorder, rank); // determine whether the digraph is cyclic or not // std::vector<std::pair<Vertex*, Vertex*> > reverseedges; bool iscyclic = this->getreverseedges(adjlist, reverseorder, rank, reverseedges); if (iscyclic) { std::cout << "revorder: error: the final integer solution is cyclic" << std::endl; throw; } for (Vertex* v : this->inst_->vertices_) { this->bestrank_[v] = rank[v]; } } } // // update current dual bound if improved if (relaxbound > node.dualbound_) { node.dualbound_ = relaxbound; // #ifdef VERBOSE std::cout << "revorder: bb: new dual bound = " << relaxbound << std::endl; std::cout << "revorder: bb: number of ordered vertices = " << node.nbordered() << std::endl; #endif // } } else{ node.dualbound_ = this->inst_->nbvertices_; #ifdef VERBOSE std::cout << "revorder: bb: dual bound relaxation is infeasible: prune the node" << std::endl; #endif } relax_.remove(cons); cons.end(); } return node.dualbound_; } // // initialize the IP model for improved dual bound void BBSolver::initializedualboundIP() { this->modeldual_ = IloModel(this->envdual_); this->cplexdual_ = IloCplex(this->modeldual_); IloExpr obj(this->envdual_); char name[256]; for (Vertex* v : this->inst_->vertices_) { this->ispartial_[v] = IloBoolVar(this->envdual_); sprintf(name, "ispartial%i", v->id_); this->ispartial_[v].setName(name); obj += this->ispartial_[v]; } this->modeldual_.add(IloMinimize(this->envdual_, obj)); obj.end(); // // if we could identify cliques that contain at least one partially-referenced vertex, add a constraint to enforce this; the two-cliques need not be checked for (Clique* c : this->cliqueswithpartialref_) { IloExpr sumpartialsinclique(this->envdual_); for (Vertex* v : c->vertices_) sumpartialsinclique += this->ispartial_[v]; this->modeldual_.add(sumpartialsinclique >= this->nbpartialinclique_[c]); sumpartialsinclique.end(); } // // if we could identify cycles composed of low degree vertices add a cut specifying that the vertices included in such cycles must include at least as many partially referenced vertices as there are cycles IloRangeArray ctaryLowDegreeCycles(this->envdual_); int nbcons = 0; for (int i = 0; i < this->lowdegreecycles_.size(); i++) { std::vector<Vertex*> cycle = this->lowdegreecycles_[i]; IloExpr sumpartialsincycle(this->envdual_); for (Vertex* v : cycle) { sumpartialsincycle += this->ispartial_[v]; } ctaryLowDegreeCycles.add(sumpartialsincycle >= this->nbpartialsincycle_[i]); sprintf(name, "ctaryLowDegreeCycles_%i", nbcons); ctaryLowDegreeCycles[nbcons++].setName(name); sumpartialsincycle.end(); } this->modeldual_.add(ctaryLowDegreeCycles); ctaryLowDegreeCycles.end(); // // load the integer problem and set display parameters this->cplexdual_.setParam(IloCplex::MIPDisplay, 0); this->cplexdual_.setParam(IloCplex::SimDisplay, 0); this->cplexdual_.setParam(IloCplex::TiLim, 10); this->cplexdual_.setParam(IloCplex::Threads, 1); // this->cplexdual_.setParam(IloCplex::Param::ParamDisplay, 0); }