Skip to content
Snippets Groups Projects
bbsolver.cpp 54.6 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
            //
            return true;
        }
        else if (this->dominates(*n1,*n2)) {
            //
#ifdef VERBOSE
            std::cout << "revorder: bb: prune node: dominance of created node ";
            if (n2->istreated_) std::cout << " already treated" <<  std::endl;
            else std::cout << "still in queue" << std::endl;
            std::cout << "revorder: bb: depth: dominant = " << n1->depth() << ", dominated = " << n2->depth() << std::endl;
            std::cout << "revorder: bb: costs: dominant = " << n1->cost_ << ", dominated = " << n2->cost_ << std::endl;
#endif
            //
            erasenodefromall(*itnode);
            
        }
        else itnode++;
    }
    return false;
    
}

//
// erase a node from every list where it appears
void BBSolver::erasenodefromall(BBNode* node) {
    //
    // first erase it from the list of children of its father
    for (auto itn = node->getfather()->children_.begin(); itn < node->getfather()->children_.end(); itn++) {
        if (*itn == node) {
            node->getfather()->children_.erase(itn);
            break;
        }
    }
    //
    // then erase its descendants if any
    for (BBNode* child: node->children_) {
        this->erasealldescendants(child);
    }
    //
    // erase from active nodes
    for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) {
        if (*itn == node) {
            activenodes_[node->cost_].erase(itn);
            this->nbactivenodes_--;
            break;
        }
    }
    if (!node->istreated_) {
        for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
            if (*itn == node) {
                bbnodesqueue_.erase(itn);
                break;
            }
        }
    }
    delete node;
}
//
// erase all the descendants of a node from all list of nodes and delete them
void BBSolver::erasealldescendants(BBNode* node) {
    
    for (BBNode* child: node->children_) {
        erasealldescendants(child);
    }
    for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) {
        if (*itn == node) {
            activenodes_[node->cost_].erase(itn);
            this->nbactivenodes_--;
            break;
        }
    }
    if (!node->istreated_) {
        for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
            if (*itn == node) {
                bbnodesqueue_.erase(itn);
                break;
            }
        }
    }
    delete node;
}
//
// compute a dual bound from the partial order described in the input node
double BBSolver::computedualbound(BBNode& node) {
    //
    // compute a simple bound by just looking at the ordered vertices
    //
    // first get the number of partially referenced vertices in the order
    int nbpartials = node.nbordered() - node.nbfullref() - this->inst_->L();
    //
    // then aknowledge that vertices with less than U neighbors cannot be fully-referenced; but beware that we know that one potential child will be partially-referenced, so do not count it twice
    int nbpotentialpartials = 1;
    for (Vertex* v: this->inst_->vertices_) {
        if (!node.isordered(v)) {
            if (v->degree_ <= this->inst_->U() - 1) {
                if (node.ispotentialchild_[v]) {
                    nbpartials++;
                    nbpotentialpartials = 0;
                }
                else{
                    nbpartials++;
                }
            }
        }
    }
    //
    // finally for each edge linking two vertices with exactly U neigbors, one will be partially referenced; still need to beware with the potential children of the node
    std::map<Vertex*,bool> inpartialedge;
    for (Vertex* u: this->inst_->vertices_) inpartialedge[u] = false;
    for (Vertex* u: this->inst_->vertices_) {
        if (!node.isordered(u) && (!inpartialedge[u]) && (u->degree_ == this->inst_->U())) {
            for (Vertex* v: u->neighbors_) {
                if (!node.isordered(v) && (!inpartialedge[v]) && (v->degree_ == this->inst_->U())) {
                    nbpartials++;
                    inpartialedge[u] = true;
                    inpartialedge[v] = true;
                    if (node.ispotentialchild_[v]) nbpotentialpartials = 0;
                    break;
                }
            }
        }
    }
    nbpartials += nbpotentialpartials;
    int trivialbound = nbpartials;
    //
    // update current dual bound if improved
    node.dualbound_ = std::max(node.dualbound_, trivialbound);
    
    
    if ((!this->improvedualbound_) && (!this->userelaxbound_) ) {
        return node.dualbound_;
    }
    
    /////////////////////////////////////////////////////////////////////////////
    // Improve the trivial bound by considering several cuts
    /////////////////////////////////////////////////////////////////////////////
    
    if (this->improvedualbound_) {
        for (Vertex* v : this->inst_->vertices_) {
            if (node.isordered(v)) {
                if (node.nbrefs(v) >= this->inst_->U()) {
                    this->ispartial_[v].setBounds(0, 0);
                }
                else {
                    this->ispartial_[v].setBounds(1,1);
                }
            }
            else if (node.mustbefullref_[v]) {
                this->ispartial_[v].setBounds(0, 0);
            }
            else if (v->degree_ <= this->inst_->U() - 1) {
                this->ispartial_[v].setBounds(1,1);
            }
            else {
                this->ispartial_[v].setBounds(0, 1);
            }
        }
        //
        // at least one among the potential children will be partially referenced
        IloExpr sumpartialinpotentials(this->envdual_);
        for (Vertex* v : node.potentialchildren_) {
            sumpartialinpotentials += this->ispartial_[v];
        }
        IloRange ctPartialsInPotentials(this->envdual_, -sumpartialinpotentials, -1);
        this->modeldual_.add(ctPartialsInPotentials);
        sumpartialinpotentials.end();
        //
        // solve the IP
        this->cplexdual_.solve();
        IloAlgorithm::Status statusimproved = this->cplexdual_.getStatus();
        int improvedbound =  this->inst_->nbvertices_;
        if (statusimproved==IloAlgorithm::Infeasible) {
            node.dualbound_ =  this->inst_->nbvertices_;
#ifdef VERBOSE
            std::cout << "revorder: bb: improved dual bound IP is infeasible: prune the node" << std::endl;
#endif
        }
        else {
            improvedbound = ceil(this->cplexdual_.getObjValue()) - this->inst_->L();
            if (improvedbound > node.dualbound_ ){
                node.dualbound_ =  improvedbound;
            }
        }
        
        this->modeldual_.remove(ctPartialsInPotentials);
        ctPartialsInPotentials.end();
        
#ifdef VERBOSE
        std::cout << "revorder: node dual bound = " << improvedbound << " ; trivialbound = " << trivialbound << std::endl;
#endif
    }
    
    /////////////////////////////////////////////////////////////////////////////
    // Compute a dual bound by solving the LP relaxation of a chosen model
    /////////////////////////////////////////////////////////////////////////////
    
    // Start searching for better bounds only if trivial bound is not too far from primal bound and a significant number of nodes have been treated to improve primal bound
    if ( (this->userelaxbound_) && (this->treatednodes_ >= 1000) && (trivialbound * 2.0 >= this->primalbound_)) {
        // fix all the variables related to the vertices that already in the current incomplete order
        for (Vertex* v1 : this->inst_->vertices_) {
            if (node.rank(v1) >= this->inst_->L() + 2) {
                if (node.nbrefs(v1) >= this->inst_->U()) {
                    isfullref_[v1].setBounds(1, 1);
                }
                else {
                    isfullref_[v1].setBounds(0, 0);
                }
            }
            else if ((node.rank(v1) >= 1) && (node.rank(v1) <= this->inst_->L()+1)) {
                isfullref_[v1].setBounds(1, 1);
            }
            else {
                if (node.mustbefullref_[v1] == true) {
                    isfullref_[v1].setBounds(1,1);
                }
                else {
                    isfullref_[v1].setBounds(0, 1);
                }
            }
            for (Vertex* v2 : v1->neighbors_) {
                if ((node.rank(v1) < 0) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(0, 1);
                else if ( (node.rank(v1) < 0) && (node.rank(v2) >= 1)) isbefore_[v1][v2].setBounds(0, 0);
                else if ((node.rank(v1) >= 1) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(1, 1);
                else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) < node.rank(v2)) ) isbefore_[v1][v2].setBounds(1, 1);
                else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) > node.rank(v2)) ) isbefore_[v1][v2].setBounds(0, 0);
                else {
                    cout << node.rank(v1) << "; " << node.rank(v2) << endl;
                    throwError("abnormal rank values");
                }
            }
        }
        
        IloExpr sumnotallfullref(this->env_);
        int maxnbfullref;
        for (Vertex* v : node.potentialchildren_) {
            sumnotallfullref += isfullref_[v];
        }
        maxnbfullref = node.potentialchildren_.size() - 1;
        IloRange cons(this->env_, sumnotallfullref, maxnbfullref);
        relax_.add(cons);
        cplexrelax_.setParam(IloCplex::SimDisplay, 0);
//        cplexrelax_.setParam(IloCplex::Param::ParamDisplay, 0);
        cplexrelax_.setParam(IloCplex::Threads, 1);
        cplexrelax_.setParam(IloCplex::MIPDisplay, 0);
        cplexrelax_.setParam(IloCplex::TuningDisplay, 0);
        cplexrelax_.setOut(cplexrelax_.getEnv().getNullStream());
        bool updateprimal_ = false;
        if ( updateprimal_ &&  (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
            cplexrelax_.setParam(IloCplex::NodeLim, 9223372036800000000);
            cplexrelax_.setParam(IloCplex::MIPSearch, 1);
            if ((this->modeltype_ == CCG) || (this->modeltype_ == WITNESS)) {
                cplexrelax_.use(CyclesLazyConstraintsBB(cplexrelax_.getEnv(), *(this->inst_), *this));
            }
        }
        else {
            cplexrelax_.setParam(IloCplex::NodeLim, 0);
        }

        cplexrelax_.solve();
        IloAlgorithm::Status status = cplexrelax_.getStatus();
        //
        // if the relaxation is infeasible, the node can be pruned : set dual bound to negative value to state this
        if (status != IloAlgorithm::Infeasible) {
            int relaxbound = ceil(cplexrelax_.getBestObjValue());
            //
#ifdef VERBOSE
            std::cout << "revorder: bb: trivial dual bound = " << trivialbound << " ; relaxation bound = " << relaxbound;
            std::cout << " (best primal bound = " << this->primalbound_ << ")" << std::endl;
#endif
            if ( updateprimal_ &&  (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
                if (relaxbound < this->primalbound_) {
                    this->primalbound_ = relaxbound;
                    std::cout << "best primal bound updated = " << this->primalbound_ << std::endl;
                    this->bestnbfullref_ = this->inst_->nbvertices_ - this->primalbound_;
                    float tolerance = 1e-06;
                    std::map<Vertex*, std::vector<Vertex*> > adjlist;
                    for (Vertex* v : this->inst_->vertices_) {
                        adjlist[v] = std::vector<Vertex*>();
                    }

                    for (Vertex* u : this->inst_->vertices_) {
                        for (Vertex* v : u->neighbors_) {
                            if (cplexrelax_.getValue(this->isbefore_[u][v]) >= 1 - tolerance) {
                                adjlist[u].push_back(v);
                            }
                        }
                    }
                    //
                    // search for the root of the digraph
                    Vertex* root = nullptr;
                    for (Vertex* v : this->inst_->vertices_) {
                        if (node.rank(v) == 1) {
                            root = v;
                        }
                    }
                    // Search for a topological order that will be valid only if the digraph is
                    // acyclic
                    std::vector<Vertex*> reverseorder;
                    std::map<Vertex*, int> rank;
                    this->topologicalorder(root, adjlist, reverseorder, rank);
                    // determine whether the digraph is cyclic or not
                    //
                    std::vector<std::pair<Vertex*, Vertex*> > reverseedges;
                    bool iscyclic = this->getreverseedges(adjlist, reverseorder, rank, reverseedges);
                    if (iscyclic) {
                        std::cout << "revorder: error: the final integer solution is cyclic" << std::endl;
                        throw;
                    }
                    for (Vertex* v : this->inst_->vertices_) {
                        this->bestrank_[v] = rank[v];
                    }
                }
            }
            //
            // update current dual bound if improved
            if (relaxbound > node.dualbound_) {
                node.dualbound_ = relaxbound;
                //
#ifdef VERBOSE
                std::cout << "revorder: bb: new dual bound = " << relaxbound << std::endl;
                std::cout << "revorder: bb: number of ordered vertices = " << node.nbordered() << std::endl;
#endif
                //
            }
        }
        else{
            node.dualbound_ =  this->inst_->nbvertices_;
#ifdef VERBOSE
            std::cout << "revorder: bb: dual bound relaxation is infeasible: prune the node" << std::endl;
#endif
        }        
        
        relax_.remove(cons);
        cons.end();
    }
    return node.dualbound_;
}
//
// initialize the IP model for improved dual bound
void BBSolver::initializedualboundIP() {
    this->modeldual_ = IloModel(this->envdual_);
    this->cplexdual_ = IloCplex(this->modeldual_);
    
    IloExpr obj(this->envdual_);
    char name[256];
    for (Vertex* v : this->inst_->vertices_) {
        this->ispartial_[v] = IloBoolVar(this->envdual_);
        sprintf(name, "ispartial%i", v->id_);
        this->ispartial_[v].setName(name);
        obj += this->ispartial_[v];
    }
    this->modeldual_.add(IloMinimize(this->envdual_, obj));
    obj.end();
    //
    // if we could identify cliques that contain at least one partially-referenced vertex, add a constraint to enforce this; the two-cliques need not be checked
    for (Clique* c : this->cliqueswithpartialref_) {
        IloExpr sumpartialsinclique(this->envdual_);
        for (Vertex* v : c->vertices_) sumpartialsinclique += this->ispartial_[v];
        this->modeldual_.add(sumpartialsinclique >= this->nbpartialinclique_[c]);
        sumpartialsinclique.end();
    }
    //
    // if we could identify cycles composed of low degree vertices add a cut specifying that the vertices included in such cycles must include at least as many partially referenced vertices as there are cycles
    IloRangeArray ctaryLowDegreeCycles(this->envdual_);
    int nbcons = 0;
    for (int i = 0; i < this->lowdegreecycles_.size(); i++) {
        std::vector<Vertex*> cycle = this->lowdegreecycles_[i];
        IloExpr sumpartialsincycle(this->envdual_);
        for (Vertex* v : cycle) {
            sumpartialsincycle += this->ispartial_[v];
        }
        ctaryLowDegreeCycles.add(sumpartialsincycle >= this->nbpartialsincycle_[i]);
        sprintf(name, "ctaryLowDegreeCycles_%i", nbcons);
        ctaryLowDegreeCycles[nbcons++].setName(name);
        sumpartialsincycle.end();
    }
    this->modeldual_.add(ctaryLowDegreeCycles);
    ctaryLowDegreeCycles.end();
    //
    // load the integer problem and set display parameters
    this->cplexdual_.setParam(IloCplex::MIPDisplay, 0);
    this->cplexdual_.setParam(IloCplex::SimDisplay, 0);
    this->cplexdual_.setParam(IloCplex::TiLim, 10);
    this->cplexdual_.setParam(IloCplex::Threads, 1);
//    this->cplexdual_.setParam(IloCplex::Param::ParamDisplay, 0);
}