Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
//
return true;
}
else if (this->dominates(*n1,*n2)) {
//
#ifdef VERBOSE
std::cout << "revorder: bb: prune node: dominance of created node ";
if (n2->istreated_) std::cout << " already treated" << std::endl;
else std::cout << "still in queue" << std::endl;
std::cout << "revorder: bb: depth: dominant = " << n1->depth() << ", dominated = " << n2->depth() << std::endl;
std::cout << "revorder: bb: costs: dominant = " << n1->cost_ << ", dominated = " << n2->cost_ << std::endl;
#endif
//
erasenodefromall(*itnode);
}
else itnode++;
}
return false;
}
//
// erase a node from every list where it appears
void BBSolver::erasenodefromall(BBNode* node) {
//
// first erase it from the list of children of its father
for (auto itn = node->getfather()->children_.begin(); itn < node->getfather()->children_.end(); itn++) {
if (*itn == node) {
node->getfather()->children_.erase(itn);
break;
}
}
//
// then erase its descendants if any
for (BBNode* child: node->children_) {
this->erasealldescendants(child);
}
//
// erase from active nodes
for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) {
if (*itn == node) {
activenodes_[node->cost_].erase(itn);
this->nbactivenodes_--;
break;
}
}
if (!node->istreated_) {
for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
if (*itn == node) {
bbnodesqueue_.erase(itn);
break;
}
}
}
delete node;
}
//
// erase all the descendants of a node from all list of nodes and delete them
void BBSolver::erasealldescendants(BBNode* node) {
for (BBNode* child: node->children_) {
erasealldescendants(child);
}
for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) {
if (*itn == node) {
activenodes_[node->cost_].erase(itn);
this->nbactivenodes_--;
break;
}
}
if (!node->istreated_) {
for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
if (*itn == node) {
bbnodesqueue_.erase(itn);
break;
}
}
}
delete node;
}
//
// compute a dual bound from the partial order described in the input node
double BBSolver::computedualbound(BBNode& node) {
//
// compute a simple bound by just looking at the ordered vertices
//
// first get the number of partially referenced vertices in the order
int nbpartials = node.nbordered() - node.nbfullref() - this->inst_->L();
//
// then aknowledge that vertices with less than U neighbors cannot be fully-referenced; but beware that we know that one potential child will be partially-referenced, so do not count it twice
int nbpotentialpartials = 1;
for (Vertex* v: this->inst_->vertices_) {
if (!node.isordered(v)) {
if (v->degree_ <= this->inst_->U() - 1) {
if (node.ispotentialchild_[v]) {
nbpartials++;
nbpotentialpartials = 0;
}
else{
nbpartials++;
}
}
}
}
//
// finally for each edge linking two vertices with exactly U neigbors, one will be partially referenced; still need to beware with the potential children of the node
std::map<Vertex*,bool> inpartialedge;
for (Vertex* u: this->inst_->vertices_) inpartialedge[u] = false;
for (Vertex* u: this->inst_->vertices_) {
if (!node.isordered(u) && (!inpartialedge[u]) && (u->degree_ == this->inst_->U())) {
for (Vertex* v: u->neighbors_) {
if (!node.isordered(v) && (!inpartialedge[v]) && (v->degree_ == this->inst_->U())) {
nbpartials++;
inpartialedge[u] = true;
inpartialedge[v] = true;
if (node.ispotentialchild_[v]) nbpotentialpartials = 0;
break;
}
}
}
}
nbpartials += nbpotentialpartials;
int trivialbound = nbpartials;
//
// update current dual bound if improved
node.dualbound_ = std::max(node.dualbound_, trivialbound);
if ((!this->improvedualbound_) && (!this->userelaxbound_) ) {
return node.dualbound_;
}
/////////////////////////////////////////////////////////////////////////////
// Improve the trivial bound by considering several cuts
/////////////////////////////////////////////////////////////////////////////
if (this->improvedualbound_) {
for (Vertex* v : this->inst_->vertices_) {
if (node.isordered(v)) {
if (node.nbrefs(v) >= this->inst_->U()) {
this->ispartial_[v].setBounds(0, 0);
}
else {
this->ispartial_[v].setBounds(1,1);
}
}
else if (node.mustbefullref_[v]) {
this->ispartial_[v].setBounds(0, 0);
}
else if (v->degree_ <= this->inst_->U() - 1) {
this->ispartial_[v].setBounds(1,1);
}
else {
this->ispartial_[v].setBounds(0, 1);
}
}
//
// at least one among the potential children will be partially referenced
IloExpr sumpartialinpotentials(this->envdual_);
for (Vertex* v : node.potentialchildren_) {
sumpartialinpotentials += this->ispartial_[v];
}
IloRange ctPartialsInPotentials(this->envdual_, -sumpartialinpotentials, -1);
this->modeldual_.add(ctPartialsInPotentials);
sumpartialinpotentials.end();
//
// solve the IP
this->cplexdual_.solve();
IloAlgorithm::Status statusimproved = this->cplexdual_.getStatus();
int improvedbound = this->inst_->nbvertices_;
if (statusimproved==IloAlgorithm::Infeasible) {
node.dualbound_ = this->inst_->nbvertices_;
#ifdef VERBOSE
std::cout << "revorder: bb: improved dual bound IP is infeasible: prune the node" << std::endl;
#endif
}
else {
improvedbound = ceil(this->cplexdual_.getObjValue()) - this->inst_->L();
if (improvedbound > node.dualbound_ ){
node.dualbound_ = improvedbound;
}
}
this->modeldual_.remove(ctPartialsInPotentials);
ctPartialsInPotentials.end();
#ifdef VERBOSE
std::cout << "revorder: node dual bound = " << improvedbound << " ; trivialbound = " << trivialbound << std::endl;
#endif
}
/////////////////////////////////////////////////////////////////////////////
// Compute a dual bound by solving the LP relaxation of a chosen model
/////////////////////////////////////////////////////////////////////////////
// Start searching for better bounds only if trivial bound is not too far from primal bound and a significant number of nodes have been treated to improve primal bound
if ( (this->userelaxbound_) && (this->treatednodes_ >= 1000) && (trivialbound * 2.0 >= this->primalbound_)) {
// fix all the variables related to the vertices that already in the current incomplete order
for (Vertex* v1 : this->inst_->vertices_) {
if (node.rank(v1) >= this->inst_->L() + 2) {
if (node.nbrefs(v1) >= this->inst_->U()) {
isfullref_[v1].setBounds(1, 1);
}
else {
isfullref_[v1].setBounds(0, 0);
}
}
else if ((node.rank(v1) >= 1) && (node.rank(v1) <= this->inst_->L()+1)) {
isfullref_[v1].setBounds(1, 1);
}
else {
if (node.mustbefullref_[v1] == true) {
isfullref_[v1].setBounds(1,1);
}
else {
isfullref_[v1].setBounds(0, 1);
}
}
for (Vertex* v2 : v1->neighbors_) {
if ((node.rank(v1) < 0) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(0, 1);
else if ( (node.rank(v1) < 0) && (node.rank(v2) >= 1)) isbefore_[v1][v2].setBounds(0, 0);
else if ((node.rank(v1) >= 1) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(1, 1);
else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) < node.rank(v2)) ) isbefore_[v1][v2].setBounds(1, 1);
else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) > node.rank(v2)) ) isbefore_[v1][v2].setBounds(0, 0);
else {
cout << node.rank(v1) << "; " << node.rank(v2) << endl;
throwError("abnormal rank values");
}
}
}
IloExpr sumnotallfullref(this->env_);
int maxnbfullref;
for (Vertex* v : node.potentialchildren_) {
sumnotallfullref += isfullref_[v];
}
maxnbfullref = node.potentialchildren_.size() - 1;
IloRange cons(this->env_, sumnotallfullref, maxnbfullref);
relax_.add(cons);
cplexrelax_.setParam(IloCplex::SimDisplay, 0);
// cplexrelax_.setParam(IloCplex::Param::ParamDisplay, 0);
cplexrelax_.setParam(IloCplex::Threads, 1);
cplexrelax_.setParam(IloCplex::MIPDisplay, 0);
cplexrelax_.setParam(IloCplex::TuningDisplay, 0);
cplexrelax_.setOut(cplexrelax_.getEnv().getNullStream());
bool updateprimal_ = false;
if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
cplexrelax_.setParam(IloCplex::NodeLim, 9223372036800000000);
cplexrelax_.setParam(IloCplex::MIPSearch, 1);
if ((this->modeltype_ == CCG) || (this->modeltype_ == WITNESS)) {
cplexrelax_.use(CyclesLazyConstraintsBB(cplexrelax_.getEnv(), *(this->inst_), *this));
}
}
else {
cplexrelax_.setParam(IloCplex::NodeLim, 0);
}
cplexrelax_.solve();
IloAlgorithm::Status status = cplexrelax_.getStatus();
//
// if the relaxation is infeasible, the node can be pruned : set dual bound to negative value to state this
if (status != IloAlgorithm::Infeasible) {
int relaxbound = ceil(cplexrelax_.getBestObjValue());
//
#ifdef VERBOSE
std::cout << "revorder: bb: trivial dual bound = " << trivialbound << " ; relaxation bound = " << relaxbound;
std::cout << " (best primal bound = " << this->primalbound_ << ")" << std::endl;
#endif
if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
if (relaxbound < this->primalbound_) {
this->primalbound_ = relaxbound;
std::cout << "best primal bound updated = " << this->primalbound_ << std::endl;
this->bestnbfullref_ = this->inst_->nbvertices_ - this->primalbound_;
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
for (Vertex* v : this->inst_->vertices_) {
adjlist[v] = std::vector<Vertex*>();
}
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : u->neighbors_) {
if (cplexrelax_.getValue(this->isbefore_[u][v]) >= 1 - tolerance) {
adjlist[u].push_back(v);
}
}
}
//
// search for the root of the digraph
Vertex* root = nullptr;
for (Vertex* v : this->inst_->vertices_) {
if (node.rank(v) == 1) {
root = v;
}
}
// Search for a topological order that will be valid only if the digraph is
// acyclic
std::vector<Vertex*> reverseorder;
std::map<Vertex*, int> rank;
this->topologicalorder(root, adjlist, reverseorder, rank);
// determine whether the digraph is cyclic or not
//
std::vector<std::pair<Vertex*, Vertex*> > reverseedges;
bool iscyclic = this->getreverseedges(adjlist, reverseorder, rank, reverseedges);
if (iscyclic) {
std::cout << "revorder: error: the final integer solution is cyclic" << std::endl;
throw;
}
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = rank[v];
}
}
}
//
// update current dual bound if improved
if (relaxbound > node.dualbound_) {
node.dualbound_ = relaxbound;
//
#ifdef VERBOSE
std::cout << "revorder: bb: new dual bound = " << relaxbound << std::endl;
std::cout << "revorder: bb: number of ordered vertices = " << node.nbordered() << std::endl;
#endif
//
}
}
else{
node.dualbound_ = this->inst_->nbvertices_;
#ifdef VERBOSE
std::cout << "revorder: bb: dual bound relaxation is infeasible: prune the node" << std::endl;
#endif
}
relax_.remove(cons);
cons.end();
}
return node.dualbound_;
}
//
// initialize the IP model for improved dual bound
void BBSolver::initializedualboundIP() {
this->modeldual_ = IloModel(this->envdual_);
this->cplexdual_ = IloCplex(this->modeldual_);
IloExpr obj(this->envdual_);
char name[256];
for (Vertex* v : this->inst_->vertices_) {
this->ispartial_[v] = IloBoolVar(this->envdual_);
sprintf(name, "ispartial%i", v->id_);
this->ispartial_[v].setName(name);
obj += this->ispartial_[v];
}
this->modeldual_.add(IloMinimize(this->envdual_, obj));
obj.end();
//
// if we could identify cliques that contain at least one partially-referenced vertex, add a constraint to enforce this; the two-cliques need not be checked
for (Clique* c : this->cliqueswithpartialref_) {
IloExpr sumpartialsinclique(this->envdual_);
for (Vertex* v : c->vertices_) sumpartialsinclique += this->ispartial_[v];
this->modeldual_.add(sumpartialsinclique >= this->nbpartialinclique_[c]);
sumpartialsinclique.end();
}
//
// if we could identify cycles composed of low degree vertices add a cut specifying that the vertices included in such cycles must include at least as many partially referenced vertices as there are cycles
IloRangeArray ctaryLowDegreeCycles(this->envdual_);
int nbcons = 0;
for (int i = 0; i < this->lowdegreecycles_.size(); i++) {
std::vector<Vertex*> cycle = this->lowdegreecycles_[i];
IloExpr sumpartialsincycle(this->envdual_);
for (Vertex* v : cycle) {
sumpartialsincycle += this->ispartial_[v];
}
ctaryLowDegreeCycles.add(sumpartialsincycle >= this->nbpartialsincycle_[i]);
sprintf(name, "ctaryLowDegreeCycles_%i", nbcons);
ctaryLowDegreeCycles[nbcons++].setName(name);
sumpartialsincycle.end();
}
this->modeldual_.add(ctaryLowDegreeCycles);
ctaryLowDegreeCycles.end();
//
// load the integer problem and set display parameters
this->cplexdual_.setParam(IloCplex::MIPDisplay, 0);
this->cplexdual_.setParam(IloCplex::SimDisplay, 0);
this->cplexdual_.setParam(IloCplex::TiLim, 10);
this->cplexdual_.setParam(IloCplex::Threads, 1);
// this->cplexdual_.setParam(IloCplex::Param::ParamDisplay, 0);
}