Newer
Older
/********************************************************************************************
Name: DiscretizationSolver
Discrete optimization for graph discretization
Author: J.Omer
Sources: C++
License: GNU General Public License v.2
History:
*********************************************************************************************/
#include "discretizationsolver.hpp"
#include <ctime>
//
ILOLAZYCONSTRAINTCALLBACK2(CyclesLazyConstraints, Instance &, inst, DiscretizationSolver&, solver) {
#ifdef VERBOSE
std::cout << "revorder: check lazy dicycle constraints" << std::endl;
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Search for cycles in the current solution digraph
//
// generate the adjacency lists of the vertices corresponding to the current
// cplex solution
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
std::map<Vertex*, int > nbrefs;
for (Vertex* v : inst.vertices_) {
adjlist[v] = std::vector<Vertex*>();
nbrefs[v] = 0;
}
for (Vertex* u : inst.vertices_) {
if (solver.modeltype_ == WITNESS) {
if (getValue(solver.isvertexinclique(u) >= 1 - tolerance)) continue;
}
for (Vertex* v : u->neighbors_) {
if (getValue(solver.isbefore(u, v)) >= 1 - tolerance) {
adjlist[u].push_back(v);
nbrefs[v]++;
}
}
}
//
// search for the root of the digraph
Vertex* root = nullptr;
int minnbrefs = inst.nbvertices_;
if (solver.modeltype_ == WITNESS) {
for (Vertex* v : inst.vertices_) {
if (getValue(solver.isvertexinclique(v) >= 1 - tolerance)) {
root = v;
break;
}
}
} else {
for (Vertex* v : inst.vertices_) {
if (nbrefs[v] < minnbrefs) {
minnbrefs = nbrefs[v];
root = v;
if (minnbrefs < inst.L()) break;
}
}
}
//
// call the enumeration of cycles, returns false if there are none
std::vector<std::vector<Vertex*> > cycles;
bool iscyclic = solver.enumeratecycles(adjlist, root, cycles);
// Look for dicycle inequalities : we restrict the search to the dicycles
// that contain at least one edge in the distance graph
// besides that, the search is performed using brute force
int nbaddedcuts = 0;
IloEnv env = getEnv();
if (iscyclic) {
for (std::vector<Vertex*> path : cycles) {
IloExpr sumedges(env);
int cyclelength = path.size();
Vertex* u = path.back();
for (int i = 0; i < cyclelength; i++) {
Vertex* v = path[i];
sumedges += solver.isbefore(u, v);
u = v;
}
if ((solver.modeltype_ == WITNESS) && (cyclelength <= inst.L() + 1)) {
add(sumedges - solver.isvertexinclique(path.front()) <= cyclelength - 1).end();
nbaddedcuts++;
} else {
add(sumedges <= cyclelength - 1).end();
nbaddedcuts++;
}
}
std::cout << "revorder: number of violated dicycle constraints : " << nbaddedcuts << std::endl;
std::cout << "revorder: the graph is acyclic " << std::endl;
}
// User branch callback that gives priority to branching on clique variables
ILOBRANCHCALLBACK2(BranchOnCliqueVariables, DiscretizationSolver&, solver, IloCplex::MIPCallbackI::NodeId&, nodeId) {
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
if (getBranchType() != BranchOnVariable)
return;
if (nodeId == getNodeId())
return;
nodeId = getNodeId();
// Branch on the fractionnary clique variable closest to 1
IntegerFeasibilityArray feas;
IloNumArray val;
try {
val = IloNumArray(getEnv());
feas = IntegerFeasibilityArray(getEnv());
getValues(val, solver.isclique_);
getFeasibilities(feas, solver.isclique_);
//
// get the clique variable with maximum integer infeasibility
IloInt bestvar = -1;
IloNum maxval = 0.3;
IloInt cols = solver.isclique_.getSize();
for (IloInt j = 0; j < cols; j++) {
if (feas[j] == Infeasible) {
if (val[j] >= 1 - 1.0e-6) {
bestvar = -1;
break;
}
if (std::min(val[j], 1 - val[j]) > maxval) {
bestvar = j;
maxval = std::min(val[j], 1 - val[j]);
}
} else if (val[j] >= 1 - 1.0e-6) {
bestvar = -1;
break;
}
}
//
// if there is at least one fractionnary clique variable create two branches
if (bestvar >= 0) {
// HeuristicNode* data = new HeuristicNode();
// data->fixcliqueindex(bestvar);
makeBranch(solver.isclique_[bestvar], val[bestvar], IloCplex::BranchUp, getObjValue());
makeBranch(solver.isclique_[bestvar], val[bestvar], IloCplex::BranchDown, getObjValue());
std::cout << "revorder: clique " << bestvar << " bounds " << getLB(solver.isclique_[bestvar]) << " " << getUB(solver.isclique_[bestvar]) << ", value " << val[bestvar] << ", feasibility " << feas[bestvar] << std::endl;
std::cout << "revorder: branch callback: branch on the variable isclique_" << bestvar << std::endl;
#endif
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
}
// else {
// Vertex* bestu = NULL;
// Vertex* bestv = NULL;
// for (Vertex* u : solver.inst_->vertices_) {
// std::map<Vertex*, IloNum> isbeforeval;
// float sumrefs = 0;
// for (Vertex* v : u->neighbors_) {
// isbeforeval[v] = getValue(solver.isbefore_[v][u]);
// sumrefs += isbeforeval[v];
// }
// if (sumrefs == solver.inst_->U()) {
// for (Vertex* v : u->neighbors_) {
// if (getFeasibility(solver.isbefore_[v][u]) == Infeasible) {
// if (std::min(isbeforeval[v], 1 - isbeforeval[v]) > maxval) {
// bestu = u;
// bestv = v;
// maxval = std::min(isbeforeval[v], 1 - isbeforeval[v]);
// }
// }
// }
// }
// }
// if (bestu) {
// // HeuristicNode* data = new HeuristicNode();
// // data->fixcliqueindex(bestvar);
// std::cout << "revorder: branch on isbefore_" << bestv->id_ << "_" << bestu->id_ << std::endl;
// makeBranch(solver.isbefore_[bestv][bestu], getValue(solver.isbefore_[bestv][bestu]), IloCplex::BranchUp, getObjValue());
// makeBranch(solver.isbefore_[bestv][bestu], getValue(solver.isbefore_[bestv][bestu]), IloCplex::BranchDown, getObjValue());
// }
// }
} catch (...) {
val.end();
feas.end();
throw;
}
val.end();
feas.end();
}
//
// constructors and destructor
Clique::Clique(std::vector<Vertex *> vert) : nbvertices_(vert.size()), vertices_(vert) {
}
Clique::~Clique() {
}
DiscretizationSolver::DiscretizationSolver(Instance* inst, Algorithm algo) : algo_(algo), inst_(inst) {
this->bestnbfullref_ = -1;
this->bestcliqueid_ = -1;
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = -1;
this->bestnbrefs_[v] = -1;
}
this->objvalue_ = inst->nbvertices_;
this->cliquecutsmaxsize_ = inst->nbvertices_;
}
//
DiscretizationSolver::DiscretizationSolver(Instance* inst, Algorithm algo, Problem pb, Model mod, std::string optionfile, float timelimit) :
problem_(pb), algo_(algo), modeltype_(mod), timelimit_(timelimit), inst_(inst) {
this->bestnbfullref_ = -1;
this->bestcliqueid_ = -1;
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = -1;
this->bestnbrefs_[v] = -1;
}
this->objvalue_ = inst->nbvertices_;
if (!optionfile.empty())
{
std::ifstream infile(optionfile.c_str());
if (!infile.is_open()) {
throwError("revorder: error: the option file could not be opened");
}
// read the file line by line
// one line contains the data relative to one option
std::string line;
while (std::getline(infile, line))
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
std::istringstream iss(line);
char buf[100];
std::string optionname;
int optionvalue;
//read the line and detect format errors
if (!(iss >> buf)) {
std::cerr << "revorder: error: there is a mistake with the "
"format of the option file" <<std::endl;
throw;
} // error
optionname = std::string(buf);
//
if (optionname.find("cliquecutsmaxsize") !=std::string::npos) {
if (!(iss >> optionvalue)) {
std::cerr << "revorder: error: there is a mistake with "
"the format of the option file" <<std::endl;
throw;
} // error
this->cliquecutsmaxsize_ = std::min(optionvalue, inst->nbvertices_);
continue;
} else if (optionname.find("initialcyclesize") !=
std::string::npos) {
if (!(iss >> optionvalue)) {
std::cerr << "revorder: error: there is a mistake with "
"the format of the option file" << std::endl;
throw;
} // error
this->initialcyclesize_ =
std::min(optionvalue, inst->nbvertices_);
continue;
} else if (optionname.find("decomposecomponents") !=
std::string::npos) {
if (!(iss >> optionvalue)) {
std::cerr << "revorder: error: there is a mistake with "
"the format of the option file" <<std::endl;
throw;
} // error
this->decomposecomponents_ = (bool) optionvalue;
continue;
}
}
} else {
this->decomposecomponents_ = false;
this->cliquecutsmaxsize_ = inst->nbvertices_;
this->initialcyclesize_ = 3;
}
}
//
DiscretizationSolver::~DiscretizationSolver() {
for (Clique* clique : this->cliques_) delete clique;
cliques_.clear();
}
//
// abstract solve method
int DiscretizationSolver::solve() {
}
//
// get the objective value of a given vertex order
int DiscretizationSolver::getobjvalue(std::map<Vertex*, int> rank, std::map<Vertex*, int> nbrefs) {
int nbfullref = 0;
for (Vertex* u : this->inst_->vertices_) {
if (nbrefs[u] >= this->inst_->U()) nbfullref += 1;
}
return this->inst_->nbvertices_ - this->inst_->L() - nbfullref;
}
//
// get number of fully referenced vertices in an order
int DiscretizationSolver::getnbfullref(std::map<Vertex*, int> rank, std::map<Vertex*, int> nbrefs) {
int nbfullref = 0;
for (Vertex* u : this->inst_->vertices_) {
if (nbrefs[u] >= this->inst_->U()) nbfullref += 1;
}
return nbfullref;
}
//
// return true if objval1 is better than objval2: this method is necessary, because the problem can be a minimization or a maximization
bool DiscretizationSolver::isabetterobjvalue(int objval1, int objval2) {
}
//
// compute the best greedy solution among those starting from the potential initial cliques and return true if the instance is feasible
// if allcliques is set to true, check every clique, otherwise, stop with the first feasible revorder
bool DiscretizationSolver::greedysolve(bool allcliques) {
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
int U = this->inst_->U();
int L = this->inst_->L();
int nbvertices = this->inst_->nbvertices_;
this->bestnbfullref_ = -1;
this->bestcliqueid_ = -1;
for (Vertex* u : this->inst_->vertices_) {
this->bestisfullref_[u] = false;
this->bestrank_[u] = -1;
this->bestnbrefs_[u] = 0;
}
this->bestfullref_.clear();
this->objvalue_ = this->inst_->nbvertices_;
std::vector<Clique*> feasiblecliques;
//
// for each clique apply the constructive greedy that iteratively adds the
// vertex with largest number of references
std::map<Vertex*, int> rank;
std::map<Vertex*, int> nbrefs;
this->greedynbfullrefperclique_.clear();
int feasiblecliqueid = -1;
for (int initialcliqueindex = 0; initialcliqueindex < this->cliques_.size(); initialcliqueindex++) {
//
// data initialization
Clique* initialclique = this->cliques_[initialcliqueindex];
int currentrank = 1;
std::vector<Vertex*> verticesleft = this->inst_->vertices_;
int nbfullref = 0;
for (Vertex * v : this->inst_->vertices_) {
nbrefs[v] = 0;
rank[v] = -1;
// treat the initial clique first
//
// set the ranks of the vertices in the clique and set them as references of their neighbors
for (Vertex* u : initialclique->vertices_) {
rank[u] = currentrank++;
for (Vertex* v : u->neighbors_) {
if (rank[v] == -1) nbrefs[v]++;
}
}
//
// record the partially and fully referenced vertices
std::vector<Vertex*> partialref;
std::vector<Vertex*> fullref;
for (Vertex* v : this->inst_->vertices_) {
if (rank[v] == -1) {
if (nbrefs[v] >= U) {
fullref.push_back(v);
} else if (nbrefs[v] >= L) {
partialref.push_back(v);
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
}
}
//
// include the vertex with largest number of references in the order until every vertex is treated or infeasibility of the initial clique is proved
while (currentrank <= nbvertices) {
if (!fullref.empty()) {
Vertex* u = fullref.back();
if (initialclique->initialpartialrefs_.empty()) {
initialclique->initialfullrefs_.push_back(u);
}
rank[u] = currentrank++;
nbfullref++;
fullref.pop_back();
for (Vertex* v : u->neighbors_) {
if (rank[v] >= 1) continue;
nbrefs[v]++;
if (nbrefs[v] == U) {
fullref.push_back(v);
} else if (nbrefs[v] == L) {
partialref.push_back(v);
}
}
} else if (!partialref.empty()) {
while (rank[partialref.back()] >= 1) {
partialref.pop_back();
if (partialref.empty()) {
break;
}
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
if (initialclique->initialpartialrefs_.empty()) {
for (Vertex* v: partialref) {
initialclique->initialpartialrefs_.push_back(v);
}
}
Vertex * u = partialref.back();
rank[u] = currentrank++;
partialref.pop_back();
for (Vertex* v : u->neighbors_) {
if (rank[v] >= 0) continue;
nbrefs[v]++;
if (nbrefs[v] == U) {
fullref.push_back(v);
} else if (nbrefs[v] == L) {
partialref.push_back(v);
}
}
} else break;
}
if (currentrank - 1 == nbvertices) {
feasiblecliqueid++;
feasiblecliques.push_back(initialclique);
this->greedynbfullrefperclique_.push_back(nbfullref);
initialclique->greedyobjvalue_ = this->getobjvalue(rank, nbrefs);
//
std::cout << "revorder: greedy: clique computed solution with value " << initialclique->greedyobjvalue_ << std::endl;
//
// record the solution if a new incumbent is found
if ((currentrank - 1 == nbvertices) && (initialclique->greedyobjvalue_ < this->objvalue_)) {
//
std::cout << "revorder: greedy: one new clique with cost " << initialclique->greedyobjvalue_ << '\n';
//
this->objvalue_ = initialclique->greedyobjvalue_;
this->bestcliqueid_ = feasiblecliqueid;
this->bestfullref_.clear();
this->bestnbfullref_ = 0;
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = rank[v];
this->bestnbrefs_[v] = nbrefs[v];
if (this->bestnbrefs_[v] >= U) {
this->bestisfullref_[v] = true;
this->bestfullref_.push_back(v);
this->bestnbfullref_++;
} else {
this->bestisfullref_[v] = false;
}
}
//
// if we do not need to check every clique, stop with the first feasible revorder
if (!allcliques) break;
}
} else {
std::cout << "revorder: greedy: this clique is not a feasible start" << std::endl;
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
}
//
// build the list of cliques that will be used in the optimization
this->cliques_.clear();
for (Clique* clique : feasiblecliques) {
this->cliques_.push_back(clique);
}
//
// update the list of cliques ids each vertex is a member of
for (Vertex* v : this->inst_->vertices_) {
this->cliqueslist_[v].clear();
this->cliqueidslist_[v].clear();
}
int id = 0;
for (Clique* clique : this->cliques_) {
for (Vertex* v : clique->vertices_) {
this->cliqueslist_[v].push_back(clique);
this->cliqueidslist_[v].push_back(id);
}
id++;
}
std::cout << "revorder: greedy: number of cliques after greedy solution = " << this->cliques_.size() << std::endl;
//
// Stop here and return false if the problem is infeasible
if (this->bestnbfullref_ == -1) {
std::cout << "revorder: greedy: no solution was found with the greedy, the problem is infeasible" << std::endl;
return false;
}
//
// Record the solution found
std::cout << "revorder: greedy: number of part. ref. vertices in the best solution = " << this->objvalue_ << std::endl;
this->greedynbfullref_ = this->bestnbfullref_;
return true;
}
//
//
// run the search for a discretization order with the input options
bool DiscretizationSolver::discretizationorder(float timelimit) {
if (this->algo_ == GREEDY) {
//
// enumerate the potential initial cliques
this->inst_->computeneighbors();
feas_status = this->enumeratecliques(this->inst_->L() + 1);
if (feas_status == false) {
this->isfeasible_ = false;
return false;
this->eliminateredundantcliques();
//
// run the greedy search
feas_status = greedysolve();
this->isfeasible_ = feas_status;
return feas_status;
}
switch (this->algo_) {
case IP:
feas_status = minpartialip(timelimit);
break;
case CP:
feas_status = cpvertex(timelimit);
break;
default:
std::cout << "revorder: error with the problem and/or algorithm fed to the solver" << std::endl;
throw;
}
}
//
// greedy algorithm to get a reference primal bound
// try all the possible initial cliques as starting points of the greedy
bool DiscretizationSolver::greedymipstart(IloCplex & cplex) {
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
//
// set the best greedy solution as primal solution for the mip solution
IloNumArray mipstartvalues(cplex.getEnv());
IloNumVarArray mipstartvariables(cplex.getEnv());
if (this->modeltype_ == VERTEXRANK) {
for (Vertex* v : this->inst_->vertices_) {
for (int k = 0; k < this->inst_->nbvertices_; k++) {
mipstartvariables.add(this->hasrank_[v][k]);
if (this->bestrank_[v] == k + 1) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
}
} else {
if (this->modeltype_ == WITNESS) {
std::map<Vertex*, int> nbwitness;
for (Vertex* u : this->inst_->vertices_) nbwitness[u] = 0;
for (Vertex* u : this->inst_->vertices_) {
if (this->bestrank_[u] <= this->inst_->L() + 1) {
for (Vertex* v : u->neighbors_) {
mipstartvariables.add(this->isbefore_[u][v]);
mipstartvalues.add(1);
nbwitness[v] += 1;
}
}
}
for (Vertex* u : this->inst_->vertices_) {
if (this->bestrank_[u] >= this->inst_->L() + 2) {
for (Vertex* v : u->neighbors_) {
mipstartvariables.add(this->isbefore_[u][v]);
if ((this->bestrank_[u] < this->bestrank_[v])) {
if ((this->bestisfullref_[v]) && (nbwitness[v] < this->inst_->U())) {
mipstartvalues.add(1);
nbwitness[v] += 1;
} else if ((!this->bestisfullref_[v]) && (nbwitness[v] < this->inst_->L())) {
mipstartvalues.add(1);
nbwitness[v] += 1;
} else mipstartvalues.add(0);
} else mipstartvalues.add(0);
}
}
}
} else {
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : u->neighbors_) {
if (u->id_ >= v->id_) continue;
mipstartvariables.add(this->isbefore_[u][v]);
mipstartvariables.add(this->isbefore_[v][u]);
if (this->bestrank_[u] < this->bestrank_[v]) {
mipstartvalues.add(1);
mipstartvalues.add(0);
} else {
mipstartvalues.add(0);
mipstartvalues.add(1);
}
}
}
}
// set the clique variables and corresponding clique variables
if (this->modeltype_ == WITNESS) {
for (Vertex* v : this->inst_->vertices_) {
mipstartvariables.add(this->isvertexinclique_[v]);
if (this->bestrank_[v] <= this->inst_->L() + 1) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
for (int c = 0; c < this->cliques_.size(); c++) {
mipstartvariables.add(this->isclique_[c]);
if (c == this->bestcliqueid_) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
}
//
// full-ref variables
for (Vertex* u : this->inst_->vertices_) {
mipstartvariables.add(this->isfullref_[u]);
if ((this->bestisfullref_[u]) || (this->bestrank_[u] <= this->inst_->L() + 1)) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
//
// rank variables for RANKS model
for (Vertex* v : this->inst_->vertices_) {
if (this->modeltype_ == RANKS) {
for (int k = 0; k < this->inst_->nbvertices_; k++) {
mipstartvariables.add(this->hasrank_[v][k]);
if (this->bestrank_[v] == k + 1) mipstartvalues.add(1);
else mipstartvalues.add(0);
mipstartvariables.add(this->rank_[v]);
mipstartvalues.add(this->bestrank_[v] - 1);
}
cplex.addMIPStart(mipstartvariables, mipstartvalues);
mipstartvariables.end();
mipstartvalues.end();
}
//
// contraint programming CP^VERTEX from Bodur and MacNeil, 2019
bool DiscretizationSolver::cpvertex(float timelimit) {
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
char name[50];
int nbvertices = this->inst_->nbvertices_;
int L = this->inst_->L();
int U = this->inst_->U();
IloEnv env;
IloTimer cpuClockTotal(env);
IloTimer cpuClockInit(env);
cpuClockTotal.start();
cpuClockInit.start();
std::cout << std::endl;
std::cout << "revorder: ----------------------------------------------------------" << std::endl;
std::cout << "\nrevorder: cp: Run preprocessing procedures " << std::endl << std::endl;
//
// compute adjacency lists
this->inst_->computeneighbors();
//
// identify the set of feasible initial cliques
if (!this->enumeratecliques(this->inst_->L() + 1)) {
this->isfeasible_ = false;
return false;
}
this->eliminateredundantcliques();
//
// run the greedy algorithm for initial solution and reduction of initial cliques
if (!this->greedysolve()) {
std::cout << "Greedy solve found the problem to be infeasible at the time of mip warm start." << std::endl;
return false;
}
//
// initialize the model
IloModel model(env);
//
// assign one unique index in {0,...,n-1} to each vertex
std::map<Vertex*, int> indv;
int ind = 0;
for (Vertex* u : this->inst_->vertices_) {
indv[u] = ind++;
}
//
// initialize adjacency matrix
IloIntArray adjmatrix(env, nbvertices * nbvertices);
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : this->inst_->vertices_) {
if (indv[v] < indv[u]) continue;
if (u->isneighbor_[v]) {
adjmatrix[nbvertices * indv[u] + indv[v]] = 1;
adjmatrix[nbvertices * indv[v] + indv[u]] = 1;
} else {
adjmatrix[nbvertices * indv[u] + indv[v]] = 0;
adjmatrix[nbvertices * indv[v] + indv[u]] = 0;
}
}
}
//
// variables that set the rank of each vertex in the order
//
// isrankfullref[k] =1 if vertex v is fully-referenced and 0 otherwise
IloBoolVarArray isrankfullref(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
isrankfullref[k] = IloBoolVar(env);
sprintf(name, "isrankfullref_%i", k);
isrankfullref[k].setName(name);
}
//
// indatrank[r] = index of the vertex at rank r
IloIntVarArray indatrank(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
indatrank[k] = IloIntVar(env, 0, nbvertices - 1);
sprintf(name, "indatrank_%i", k);
indatrank[k].setName(name);
}
//
// objective function
IloExpr obj(env);
obj += 1;
for (int k = L + 1; k < nbvertices; k++) {
obj += (1 - isrankfullref[k]);
}
model.add(IloMinimize(env, obj));
for (int i = 0; i <= L - 1; i++) {
for (int j = i + 1; j <= L; j++) {
model.add(IloElement(adjmatrix, nbvertices * indatrank[i] + indatrank[j]) == 1);
}
}
for (int r = L + 1; r < nbvertices; r++) {
IloExpr sumrefs(env);
for (int i = 0; i <= r - 1; i++) {
sumrefs += IloElement(adjmatrix, nbvertices * indatrank[i] + indatrank[r]);
}
model.add(sumrefs - (U - L) * isrankfullref[r] >= L);
sumrefs.end();
}
model.add(IloAllDiff(env, indatrank));
//
// set as not in clique, all the vertices that do not belong to one of the possible clique
std::map < Vertex*, bool> okforclique;
for (Vertex* v : this->inst_->vertices_) okforclique[v] = false;
for (Clique* c : this->cliques_) {
for (Vertex* v : c->vertices_) {
okforclique[v] = true;
}
}
for (Vertex* v : this->inst_->vertices_) {
if (!okforclique[v]) {
for (int r = 0; r <= L; r++) {
model.add(indatrank[r] != indv[v]);
}
}
}
//
// load model in the CP solver
IloCP cp(model);
//
// provide starting point with greedy solution
//
IloSolution sol(env);
for (Vertex* v : this->inst_->vertices_) {
if (this->bestrank_[v] - 1 >= L + 1) {
sol.setValue(isrankfullref[this->bestrank_[v] - 1], bestisfullref_[v]);
}
sol.setValue(indatrank[this->bestrank_[v] - 1], indv[v]);
}
cp.setStartingPoint(sol);
cpuClockInit.stop();
//
// set CP parameter
cp.setParameter(IloCP::LogVerbosity, IloCP::Normal);
cp.setParameter(IloCP::Workers, 1);
cp.setParameter(IloCP::TimeLimit, timelimit - cpuClockInit.getTime());
#ifdef VERBOSE
cp.setParameter(IloCP::LogVerbosity, IloCP::Normal);
#endif
IloTimer cpuClock(env);
cpuClock.start();
try {
cp.solve();
} catch (IloException& e) {
std::cerr << e << std::endl;
}
cpuClockTotal.stop();
IloAlgorithm::Status status = cp.getStatus();
std::cout << "revorder: ----------------------------------------------------------\n" << std::endl;
std::cout << "revorder: CP optimizer solution status = " << status << std::endl;
isfeasible_ = (status == IloAlgorithm::Feasible) || (status == IloAlgorithm::Optimal);
isoptimal_ = (status == IloAlgorithm::Optimal);
if (isfeasible_) {
// retrieve the information on the solution process
this->objvalue_ = cp.getObjValue();
totaltime_ = cpuClock.getTime();
treatednodes_ = cp.getInfo(IloCP::NumberOfBranches);
// get the optimal order
for (int r = 0; r < this->inst_->nbvertices_; r++) {
this->bestrank_[this->inst_->vertices_[cp.getValue(indatrank[r])]] = r;
// get the number of references of each vertex
for (Vertex* u : this->inst_->vertices_) {
this->bestnbrefs_[u] = 0;
for (Vertex* v : u->neighbors_) {
if (this->bestrank_[v] < this->bestrank_[u]) this->bestnbrefs_[u]++;
}
// get fully referenced vertices
this->bestfullref_.clear();
this->bestnbfullref_ = 0;
this->bestisfullref_.clear();
for (Vertex* u : this->inst_->vertices_) {
if (this->bestnbrefs_[u] >= this->inst_->U()) {
this->bestisfullref_[u] = true;
this->bestfullref_.push_back(u);
this->bestnbfullref_++;
} else this->bestisfullref_[u] = false;
//
// summary of cp execution
std::cout << "revorder: total cpu time = " << cpuClockTotal.getTime() << " s" << std::endl;
std::cout << "revorder: initialization cpu time = " << cpuClockInit.getTime() << " s" << std::endl;
std::cout << "revorder: number of branches explored = " << treatednodes_ << std::endl;
std::cout << "revorder: value of the objective function = " << objvalue_ << std::endl;
std::cout << "revorder: verification: number of part. ref. vertices = " << this->inst_->nbvertices_ - this->inst_->L() - this->bestnbfullref_ << std::endl;
} else {
std::string fileInfeasible("InfeasibleModel.lp");
cp.exportModel(fileInfeasible.c_str());
std::cout << "revorder: no feasible solution was found during the optimization!" << std::endl;
std::cout << "revorder: check the file " << fileInfeasible << " to see the corresponding model" << std::endl;
}
//
// delete CP objects
cp.end();
model.end();
env.end();
return isfeasible_;
}
//
// create the cplex model for the IP formulation described in Bodur an MacNeil, 2019
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
void DiscretizationSolver::defineminpartial_vertexrank(IloModel & model) {
IloEnv env = model.getEnv();
char name[50];
int nbvertices = this->inst_->nbvertices_;
int L = this->inst_->L();
int U = this->inst_->U();
//////////////////////////////////////////////////////////////////////////////
// Declare the variables
//////////////////////////////////////////////////////////////////////////////
//
// variables that set the rank of each vertex in the order
// - hasrank_[v,k] = 1 if vertex i has rank k in the discretization order
// in this model, we use these variables only for the first L vertices
// of the cliques (if modeltype <= 1)
for (Vertex* v : this->inst_->vertices_) {
hasrank_[v] = IloBoolVarArray(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
sprintf(name, "hasrank_%i_%i", v->id_, k);
hasrank_[v][k].setName(name);
}
}
//
// isrankfullref[k] =1 if vertex v is fully-referenced and 0 otherwise
IloBoolVarArray isrankfullref(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
isrankfullref[k] = IloBoolVar(env);
sprintf(name, "isrankfullref_%i", k);
isrankfullref[k].setName(name);
}
//
// isfullrefatrank[u,k] = 1 if vertex u is fully-referenced and is at rank k
BoolVarMapArray isfullrefatrank;
for (Vertex* v : this->inst_->vertices_) {
isfullrefatrank[v] = IloBoolVarArray(env, nbvertices);
for (int k = 0; k < this->inst_->nbvertices_; k++) {
sprintf(name, "isfullrefatrank%i_%i", v->id_, k);
isfullrefatrank[v][k].setName(name);
}
}
//////////////////////////////////////////////////////////////////////////////
// Set the cplex model that will be solved
//////////////////////////////////////////////////////////////////////////////
//
// objective function
IloExpr obj(env);
obj += 1;
for (int k = 0; k < nbvertices; k++) {
obj += (1 - isrankfullref[k]);
}
model.add(IloMinimize(env, obj));
//
// each rank of the order is taken by exactly one vertex
IloRangeArray ctaryOneVertexPerRank(env);
for (int k = 0; k < nbvertices; k++) {
IloExpr sumvertices(env);
for (Vertex* v : this->inst_->vertices_) sumvertices += hasrank_[v][k];
ctaryOneVertexPerRank.add(sumvertices == 1);
sprintf(name, "ctaryOneVertexPerRank_%i", k);
ctaryOneVertexPerRank[k].setName(name);
}
model.add(ctaryOneVertexPerRank);
//
// each vertex has exactly one rank and his rank is computed
IloRangeArray ctaryOneRankPerVertex(env);
IloRangeArray ctaryComputeRank(env);
int nbcons = 0;
for (Vertex* u : this->inst_->vertices_) {
IloExpr sumhasrank(env);
for (int k = 0; k < nbvertices; k++) sumhasrank += hasrank_[u][k];
ctaryOneRankPerVertex.add(sumhasrank == 1);
sprintf(name, "ctaryOneRankPerVertex_%i", u->id_);
ctaryOneRankPerVertex[nbcons].setName(name);
}
model.add(ctaryOneRankPerVertex);
//
// Guarantee that isfullrefatrank[v][k] =1 only if v has rank k and has at least U references
IloRangeArray ctaryIsFullRefAtLevel(env);
for (int k = 0; k <= L; k++) {
ctaryIsFullRefAtLevel.add(isrankfullref[k] == 1);
}
for (int k = 0; k < this->inst_->nbvertices_; k++) {
for (Vertex* v : this->inst_->vertices_) {
ctaryIsFullRefAtLevel.add(hasrank_[v][k] - (1 - isrankfullref[k]) - isfullrefatrank[v][k] <= 0);
}
}
model.add(ctaryIsFullRefAtLevel);
//
// Discretization constraints: every vertex must be partially-referenced and those with more than U references are fully-referenced
IloRangeArray ctaryLrefs(env);
IloRangeArray ctaryClique(env);
IloRangeArray ctaryFullRef(env);
nbcons = 0;
for (Vertex* u : this->inst_->vertices_) {
// first deal with the vertices of the initial clique
for (int k = 0; k <= L; k++) {
IloExpr sumrefs(env);
for (Vertex* v : u->neighbors_) {
for (int l = 0; l <= k - 1; l++) sumrefs += hasrank_[v][l];
}
ctaryClique.add(sumrefs - k * hasrank_[u][k] >= 0);
// then deal with the rest of the order
for (int k = L + 1; k < nbvertices; k++) {
IloExpr sumrefs(env);
for (Vertex* v : u->neighbors_) {
for (int l = 0; l <= k - 1; l++) sumrefs += hasrank_[v][l];
}
ctaryLrefs.add(sumrefs - L * hasrank_[u][k] >= 0);
ctaryFullRef.add(sumrefs - U * isfullrefatrank[u][k] >= 0);
}
}
model.add(ctaryClique);