Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/********************************************************************************************
Name: DiscretizationSolver
Discrete optimization for graph discretization
Author: J.Omer
Sources: C++
License: GNU General Public License v.2
History:
*********************************************************************************************/
#include "discretizationsolver.hpp"
#include <ctime>
//
ILOLAZYCONSTRAINTCALLBACK2(CyclesLazyConstraints, Instance &, inst, DiscretizationSolver&, solver) {
#ifdef VERBOSE
std::cout << "revorder: check lazy dicycle constraints" << std::endl;
#endif
// Search for cycles in the current solution digraph
//
// generate the adjacency lists of the vertices corresponding to the current
// cplex solution
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
std::map<Vertex*, int > nbrefs;
for (Vertex* v : inst.vertices_) {
adjlist[v] = std::vector<Vertex*>();
nbrefs[v] = 0;
}
for (Vertex* u : inst.vertices_) {
if (solver.modeltype_ == WITNESS) {
if (getValue(solver.isvertexinclique(u) >= 1 - tolerance)) continue;
}
for (Vertex* v : u->neighbors_) {
if (getValue(solver.isbefore(u, v)) >= 1 - tolerance) {
adjlist[u].push_back(v);
nbrefs[v]++;
}
}
}
//
// search for the root of the digraph
Vertex* root = nullptr;
int minnbrefs = inst.nbvertices_;
if (solver.modeltype_ == WITNESS) {
for (Vertex* v : inst.vertices_) {
if (getValue(solver.isvertexinclique(v) >= 1 - tolerance)) {
root = v;
break;
}
}
} else {
for (Vertex* v : inst.vertices_) {
if (nbrefs[v] < minnbrefs) {
minnbrefs = nbrefs[v];
root = v;
if (minnbrefs < inst.L()) break;
}
}
}
//
// call the enumeration of cycles, returns false if there are none
std::vector<std::vector<Vertex*> > cycles;
bool iscyclic = solver.enumeratecycles(adjlist, root, cycles);
// Look for dicycle inequalities : we restrict the search to the dicycles
// that contain at least one edge in the distance graph
// besides that, the search is performed using brute force
int nbaddedcuts = 0;
IloEnv env = getEnv();
if (iscyclic) {
for (std::vector<Vertex*> path : cycles) {
IloExpr sumedges(env);
int cyclelength = path.size();
Vertex* u = path.back();
for (int i = 0; i < cyclelength; i++) {
Vertex* v = path[i];
sumedges += solver.isbefore(u, v);
u = v;
}
if ((solver.modeltype_ == WITNESS) && (cyclelength <= inst.L() + 1)) {
add(sumedges - solver.isvertexinclique(path.front()) <= cyclelength - 1).end();
nbaddedcuts++;
} else {
add(sumedges <= cyclelength - 1).end();
nbaddedcuts++;
}
}
#ifdef VERBOSE
std::cout << "revorder: number of violated dicycle constraints : " << nbaddedcuts << std::endl;
#endif
} else {
#ifdef VERBOSE
std::cout << "revorder: the graph is acyclic " << std::endl;
#endif
}
return;
}
// User branch callback that gives priority to branching on clique variables
ILOBRANCHCALLBACK2(BranchOnCliqueVariables, DiscretizationSolver&, solver, IloCplex::MIPCallbackI::NodeId&, nodeId) {
if (getBranchType() != BranchOnVariable)
return;
if (nodeId == getNodeId())
return;
nodeId = getNodeId();
// Branch on the fractionnary clique variable closest to 1
IntegerFeasibilityArray feas;
IloNumArray val;
try {
val = IloNumArray(getEnv());
feas = IntegerFeasibilityArray(getEnv());
getValues(val, solver.isclique_);
getFeasibilities(feas, solver.isclique_);
//
// get the clique variable with maximum integer infeasibility
IloInt bestvar = -1;
IloNum maxval = 0.3;
IloInt cols = solver.isclique_.getSize();
for (IloInt j = 0; j < cols; j++) {
if (feas[j] == Infeasible) {
if (val[j] >= 1 - 1.0e-6) {
bestvar = -1;
break;
}
if (std::min(val[j], 1 - val[j]) > maxval) {
bestvar = j;
maxval = std::min(val[j], 1 - val[j]);
}
} else if (val[j] >= 1 - 1.0e-6) {
bestvar = -1;
break;
}
}
//
// if there is at least one fractionnary clique variable create two branches
if (bestvar >= 0) {
// HeuristicNode* data = new HeuristicNode();
// data->fixcliqueindex(bestvar);
makeBranch(solver.isclique_[bestvar], val[bestvar], IloCplex::BranchUp, getObjValue());
makeBranch(solver.isclique_[bestvar], val[bestvar], IloCplex::BranchDown, getObjValue());
#ifdef VERBOSE
std::cout << "revorder: clique " << bestvar << " bounds " << getLB(solver.isclique_[bestvar]) << " " << getUB(solver.isclique_[bestvar]) << ", value " << val[bestvar] << ", feasibility " << feas[bestvar] << std::endl;
std::cout << "revorder: branch callback: branch on the variable isclique_" << bestvar << std::endl;
#endif
}
// else {
// Vertex* bestu = NULL;
// Vertex* bestv = NULL;
// for (Vertex* u : solver.inst_->vertices_) {
// std::map<Vertex*, IloNum> isbeforeval;
// float sumrefs = 0;
// for (Vertex* v : u->neighbors_) {
// isbeforeval[v] = getValue(solver.isbefore_[v][u]);
// sumrefs += isbeforeval[v];
// }
// if (sumrefs == solver.inst_->U()) {
// for (Vertex* v : u->neighbors_) {
// if (getFeasibility(solver.isbefore_[v][u]) == Infeasible) {
// if (std::min(isbeforeval[v], 1 - isbeforeval[v]) > maxval) {
// bestu = u;
// bestv = v;
// maxval = std::min(isbeforeval[v], 1 - isbeforeval[v]);
// }
// }
// }
// }
// }
// if (bestu) {
// // HeuristicNode* data = new HeuristicNode();
// // data->fixcliqueindex(bestvar);
// std::cout << "revorder: branch on isbefore_" << bestv->id_ << "_" << bestu->id_ << std::endl;
// makeBranch(solver.isbefore_[bestv][bestu], getValue(solver.isbefore_[bestv][bestu]), IloCplex::BranchUp, getObjValue());
// makeBranch(solver.isbefore_[bestv][bestu], getValue(solver.isbefore_[bestv][bestu]), IloCplex::BranchDown, getObjValue());
// }
// }
} catch (...) {
val.end();
feas.end();
throw;
}
val.end();
feas.end();
}
//
// constructors and destructor
Clique::Clique(std::vector<Vertex *> vert) : nbvertices_(vert.size()), vertices_(vert) {
}
Clique::~Clique() {
}
DiscretizationSolver::DiscretizationSolver(Instance* inst, Algorithm algo) : algo_(algo), inst_(inst) {
this->bestnbfullref_ = -1;
this->bestcliqueid_ = -1;
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = -1;
this->bestnbrefs_[v] = -1;
}
this->objvalue_ = inst->nbvertices_;
this->cliquecutsmaxsize_ = inst->nbvertices_;
}
//
DiscretizationSolver::DiscretizationSolver(Instance* inst, Algorithm algo, Problem pb, Model mod, std::string optionfile, float timelimit) :
problem_(pb), algo_(algo), modeltype_(mod), timelimit_(timelimit), inst_(inst) {
this->bestnbfullref_ = -1;
this->bestcliqueid_ = -1;
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = -1;
this->bestnbrefs_[v] = -1;
}
this->objvalue_ = inst->nbvertices_;
if (!optionfile.empty())
{
std::ifstream infile(optionfile.c_str());
if (!infile.is_open()) {
throwError("revorder: error: the option file could not be opened");
}
// read the file line by line
// one line contains the data relative to one option
std::string line;
while (std::getline(infile, line))
{
std::istringstream iss(line);
char buf[100];
std::string optionname;
int optionvalue;
//read the line and detect format errors
if (!(iss >> buf)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
} // error
optionname = std::string(buf);
//
if (optionname.find("cliquecutsmaxsize") !=std::string::npos) {
if (!(iss >> optionvalue)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
} // error
this->cliquecutsmaxsize_ = std::min(optionvalue, inst->nbvertices_);
continue;
}
else if (optionname.find("initialcyclesize") !=std::string::npos) {
if (!(iss >> optionvalue)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
} // error
this->initialcyclesize_ = std::min(optionvalue, inst->nbvertices_);
continue;
}
else if (optionname.find("decomposecomponents") !=std::string::npos) {
if (!(iss >> optionvalue)){
std::cerr << "revorder: error: there is a mistake with the format of the option file" <<std::endl;
throw;
} // error
this->decomposecomponents_ = (bool) optionvalue;
continue;
}
}
}
else {
this->decomposecomponents_ = false;
this->cliquecutsmaxsize_ = inst->nbvertices_;
this->initialcyclesize_ = 3;
}
}
//
DiscretizationSolver::~DiscretizationSolver() {
for (Clique* clique : this->cliques_) delete clique;
cliques_.clear();
}
//
// abstract solve method
int DiscretizationSolver::solve() {
return 0;
}
//
// get the objective value of a given vertex order
int DiscretizationSolver::getobjvalue(std::map<Vertex*, int> rank, std::map<Vertex*, int> nbrefs) {
int nbfullref = 0;
for (Vertex* u : this->inst_->vertices_) {
if (nbrefs[u] >= this->inst_->U()) nbfullref += 1;
}
return this->inst_->nbvertices_ - this->inst_->L() - nbfullref;
}
//
// get number of fully referenced vertices in an order
int DiscretizationSolver::getnbfullref(std::map<Vertex*, int> rank, std::map<Vertex*, int> nbrefs) {
int nbfullref = 0;
for (Vertex* u : this->inst_->vertices_) {
if (nbrefs[u] >= this->inst_->U()) nbfullref += 1;
}
return nbfullref;
}
//
// return true if objval1 is better than objval2: this method is necessary, because the problem can be a minimization or a maximization
bool DiscretizationSolver::isabetterobjvalue(int objval1, int objval2) {
return objval1 > objval2;
}
//
// compute the best greedy solution among those starting from the potential initial cliques and return true if the instance is feasible
// if allcliques is set to true, check every clique, otherwise, stop with the first feasible revorder
bool DiscretizationSolver::greedysolve(bool allcliques) {
int U = this->inst_->U();
int L = this->inst_->L();
int nbvertices = this->inst_->nbvertices_;
this->bestnbfullref_ = -1;
this->bestcliqueid_ = -1;
for (Vertex* u : this->inst_->vertices_) {
this->bestisfullref_[u] = false;
this->bestrank_[u] = -1;
this->bestnbrefs_[u] = 0;
}
this->bestfullref_.clear();
this->objvalue_ = this->inst_->nbvertices_;
std::vector<Clique*> feasiblecliques;
//
// for each clique apply the constructive greedy that iteratively adds the
// vertex with largest number of references
std::map<Vertex*, int> rank;
std::map<Vertex*, int> nbrefs;
this->greedynbfullrefperclique_.clear();
int feasiblecliqueid = -1;
for (int initialcliqueindex = 0; initialcliqueindex < this->cliques_.size(); initialcliqueindex++) {
//
// data initialization
Clique* initialclique = this->cliques_[initialcliqueindex];
int currentrank = 1;
std::vector<Vertex*> verticesleft = this->inst_->vertices_;
int nbfullref = 0;
for (Vertex * v : this->inst_->vertices_) {
nbrefs[v] = 0;
rank[v] = -1;
}
//
// treat the initial clique first
//
// set the ranks of the vertices in the clique and set them as references of their neighbors
for (Vertex* u : initialclique->vertices_) {
rank[u] = currentrank++;
for (Vertex* v : u->neighbors_) {
if (rank[v] == -1) nbrefs[v]++;
}
}
//
// record the partially and fully referenced vertices
std::vector<Vertex*> partialref;
std::vector<Vertex*> fullref;
for (Vertex* v : this->inst_->vertices_) {
if (rank[v] == -1) {
if (nbrefs[v] >= U) {
fullref.push_back(v);
} else if (nbrefs[v] >= L) {
partialref.push_back(v);
}
}
}
//
// include the vertex with largest number of references in the order until every vertex is treated or infeasibility of the initial clique is proved
while (currentrank <= nbvertices) {
if (!fullref.empty()) {
Vertex* u = fullref.back();
if (initialclique->initialpartialrefs_.empty()) {
initialclique->initialfullrefs_.push_back(u);
}
rank[u] = currentrank++;
nbfullref++;
fullref.pop_back();
for (Vertex* v : u->neighbors_) {
if (rank[v] >= 1) continue;
nbrefs[v]++;
if (nbrefs[v] == U) {
fullref.push_back(v);
} else if (nbrefs[v] == L) {
partialref.push_back(v);
}
}
} else if (!partialref.empty()) {
while (rank[partialref.back()] >= 1) {
partialref.pop_back();
if (partialref.empty()) {
break;
}
}
if (partialref.empty()) break;
if (initialclique->initialpartialrefs_.empty()) {
for (Vertex* v: partialref) {
initialclique->initialpartialrefs_.push_back(v);
}
}
Vertex * u = partialref.back();
rank[u] = currentrank++;
partialref.pop_back();
for (Vertex* v : u->neighbors_) {
if (rank[v] >= 0) continue;
nbrefs[v]++;
if (nbrefs[v] == U) {
fullref.push_back(v);
} else if (nbrefs[v] == L) {
partialref.push_back(v);
}
}
} else break;
}
if (currentrank - 1 == nbvertices) {
feasiblecliqueid++;
feasiblecliques.push_back(initialclique);
this->greedynbfullrefperclique_.push_back(nbfullref);
initialclique->greedyobjvalue_ = this->getobjvalue(rank, nbrefs);
//
#ifdef VERBOSE
std::cout << "revorder: greedy: clique computed solution with value " << initialclique->greedyobjvalue_ << std::endl;
#endif
//
// record the solution if a new incumbent is found
if ((currentrank - 1 == nbvertices) && (initialclique->greedyobjvalue_ < this->objvalue_)) {
//
#ifdef VERBOSE
std::cout << "revorder: greedy: one new clique with cost " << initialclique->greedyobjvalue_ << '\n';
#endif
//
this->objvalue_ = initialclique->greedyobjvalue_;
this->bestcliqueid_ = feasiblecliqueid;
this->bestfullref_.clear();
this->bestnbfullref_ = 0;
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = rank[v];
this->bestnbrefs_[v] = nbrefs[v];
if (this->bestnbrefs_[v] >= U) {
this->bestisfullref_[v] = true;
this->bestfullref_.push_back(v);
this->bestnbfullref_++;
} else {
this->bestisfullref_[v] = false;
}
}
//
// if we do not need to check every clique, stop with the first feasible revorder
if (!allcliques) break;
}
} else {
#ifdef VERBOSE
std::cout << "revorder: greedy: this clique is not a feasible start" << std::endl;
#endif
}
}
//
// build the list of cliques that will be used in the optimization
this->cliques_.clear();
for (Clique* clique : feasiblecliques) {
this->cliques_.push_back(clique);
}
//
// update the list of cliques ids each vertex is a member of
for (Vertex* v : this->inst_->vertices_) {
this->cliqueslist_[v].clear();
this->cliqueidslist_[v].clear();
}
int id = 0;
for (Clique* clique : this->cliques_) {
for (Vertex* v : clique->vertices_) {
this->cliqueslist_[v].push_back(clique);
this->cliqueidslist_[v].push_back(id);
}
id++;
}
std::cout << "revorder: greedy: number of cliques after greedy solution = " << this->cliques_.size() << std::endl;
//
// Stop here and return false if the problem is infeasible
if (this->bestnbfullref_ == -1) {
std::cout << "revorder: greedy: no solution was found with the greedy, the problem is infeasible" << std::endl;
return false;
}
//
// Record the solution found
std::cout << "revorder: greedy: number of part. ref. vertices in the best solution = " << this->objvalue_ << std::endl;
this->greedynbfullref_ = this->bestnbfullref_;
return true;
}
//
//
// run the search for a discretization order with the input options
bool DiscretizationSolver::discretizationorder(float timelimit) {
bool feas_status = true;
if (this->algo_ == GREEDY) {
//
// enumerate the potential initial cliques
this->inst_->computeneighbors();
feas_status = this->enumeratecliques(this->inst_->L() + 1);
if (feas_status == false) {
this->isfeasible_ = false;
return false;
}
this->eliminateredundantcliques();
//
// run the greedy search
feas_status = greedysolve();
this->isfeasible_ = feas_status;
return feas_status;
}
switch (this->algo_) {
case IP:
feas_status = minpartialip(timelimit);
break;
case CP:
feas_status = cpvertex(timelimit);
break;
default:
std::cout << "revorder: error with the problem and/or algorithm fed to the solver" << std::endl;
throw;
}
return feas_status;
}
//
// greedy algorithm to get a reference primal bound
// try all the possible initial cliques as starting points of the greedy
bool DiscretizationSolver::greedymipstart(IloCplex & cplex) {
//
// set the best greedy solution as primal solution for the mip solution
IloNumArray mipstartvalues(cplex.getEnv());
IloNumVarArray mipstartvariables(cplex.getEnv());
if (this->modeltype_ == VERTEXRANK) {
for (Vertex* v : this->inst_->vertices_) {
for (int k = 0; k < this->inst_->nbvertices_; k++) {
mipstartvariables.add(this->hasrank_[v][k]);
if (this->bestrank_[v] == k + 1) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
}
} else {
if (this->modeltype_ == WITNESS) {
std::map<Vertex*, int> nbwitness;
for (Vertex* u : this->inst_->vertices_) nbwitness[u] = 0;
for (Vertex* u : this->inst_->vertices_) {
if (this->bestrank_[u] <= this->inst_->L() + 1) {
for (Vertex* v : u->neighbors_) {
mipstartvariables.add(this->isbefore_[u][v]);
mipstartvalues.add(1);
nbwitness[v] += 1;
}
}
}
for (Vertex* u : this->inst_->vertices_) {
if (this->bestrank_[u] >= this->inst_->L() + 2) {
for (Vertex* v : u->neighbors_) {
mipstartvariables.add(this->isbefore_[u][v]);
if ((this->bestrank_[u] < this->bestrank_[v])) {
if ((this->bestisfullref_[v]) && (nbwitness[v] < this->inst_->U())) {
mipstartvalues.add(1);
nbwitness[v] += 1;
} else if ((!this->bestisfullref_[v]) && (nbwitness[v] < this->inst_->L())) {
mipstartvalues.add(1);
nbwitness[v] += 1;
} else mipstartvalues.add(0);
} else mipstartvalues.add(0);
}
}
}
} else {
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : u->neighbors_) {
if (u->id_ >= v->id_) continue;
mipstartvariables.add(this->isbefore_[u][v]);
mipstartvariables.add(this->isbefore_[v][u]);
if (this->bestrank_[u] < this->bestrank_[v]) {
mipstartvalues.add(1);
mipstartvalues.add(0);
} else {
mipstartvalues.add(0);
mipstartvalues.add(1);
}
}
}
}
//
// set the clique variables and corresponding clique variables
if (this->modeltype_ == WITNESS) {
for (Vertex* v : this->inst_->vertices_) {
mipstartvariables.add(this->isvertexinclique_[v]);
if (this->bestrank_[v] <= this->inst_->L() + 1) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
} else {
for (int c = 0; c < this->cliques_.size(); c++) {
mipstartvariables.add(this->isclique_[c]);
if (c == this->bestcliqueid_) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
}
//
// full-ref variables
for (Vertex* u : this->inst_->vertices_) {
mipstartvariables.add(this->isfullref_[u]);
if ((this->bestisfullref_[u]) || (this->bestrank_[u] <= this->inst_->L() + 1)) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
//
// rank variables for RANKS model
for (Vertex* v : this->inst_->vertices_) {
if (this->modeltype_ == RANKS) {
for (int k = 0; k < this->inst_->nbvertices_; k++) {
mipstartvariables.add(this->hasrank_[v][k]);
if (this->bestrank_[v] == k + 1) mipstartvalues.add(1);
else mipstartvalues.add(0);
}
mipstartvariables.add(this->rank_[v]);
mipstartvalues.add(this->bestrank_[v] - 1);
}
}
}
cplex.addMIPStart(mipstartvariables, mipstartvalues);
mipstartvariables.end();
mipstartvalues.end();
return true;
}
//
// contraint programming CP^VERTEX from Bodur and MacNeil, 2019
bool DiscretizationSolver::cpvertex(float timelimit) {
char name[50];
int nbvertices = this->inst_->nbvertices_;
int L = this->inst_->L();
int U = this->inst_->U();
IloEnv env;
IloTimer cpuClockTotal(env);
IloTimer cpuClockInit(env);
cpuClockTotal.start();
cpuClockInit.start();
std::cout << std::endl;
std::cout << "revorder: ----------------------------------------------------------" << std::endl;
std::cout << "\nrevorder: cp: Run preprocessing procedures " << std::endl << std::endl;
//
// compute adjacency lists
this->inst_->computeneighbors();
//
// identify the set of feasible initial cliques
if (!this->enumeratecliques(this->inst_->L() + 1)) {
this->isfeasible_ = false;
return false;
}
this->eliminateredundantcliques();
//
// run the greedy algorithm for initial solution and reduction of initial cliques
if (!this->greedysolve()) {
std::cout << "Greedy solve found the problem to be infeasible at the time of mip warm start." << std::endl;
return false;
}
//
// initialize the model
IloModel model(env);
//
// assign one unique index in {0,...,n-1} to each vertex
std::map<Vertex*, int> indv;
int ind = 0;
for (Vertex* u : this->inst_->vertices_) {
indv[u] = ind++;
}
//
// initialize adjacency matrix
IloIntArray adjmatrix(env, nbvertices * nbvertices);
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : this->inst_->vertices_) {
if (indv[v] < indv[u]) continue;
if (u->isneighbor_[v]) {
adjmatrix[nbvertices * indv[u] + indv[v]] = 1;
adjmatrix[nbvertices * indv[v] + indv[u]] = 1;
} else {
adjmatrix[nbvertices * indv[u] + indv[v]] = 0;
adjmatrix[nbvertices * indv[v] + indv[u]] = 0;
}
}
}
//
// variables that set the rank of each vertex in the order
//
// isrankfullref[k] =1 if vertex v is fully-referenced and 0 otherwise
IloBoolVarArray isrankfullref(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
isrankfullref[k] = IloBoolVar(env);
sprintf(name, "isrankfullref_%i", k);
isrankfullref[k].setName(name);
}
//
// indatrank[r] = index of the vertex at rank r
IloIntVarArray indatrank(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
indatrank[k] = IloIntVar(env, 0, nbvertices - 1);
sprintf(name, "indatrank_%i", k);
indatrank[k].setName(name);
}
//
// objective function
IloExpr obj(env);
obj += 1;
for (int k = L + 1; k < nbvertices; k++) {
obj += (1 - isrankfullref[k]);
}
model.add(IloMinimize(env, obj));
for (int i = 0; i <= L - 1; i++) {
for (int j = i + 1; j <= L; j++) {
model.add(IloElement(adjmatrix, nbvertices * indatrank[i] + indatrank[j]) == 1);
}
}
for (int r = L + 1; r < nbvertices; r++) {
IloExpr sumrefs(env);
for (int i = 0; i <= r - 1; i++) {
sumrefs += IloElement(adjmatrix, nbvertices * indatrank[i] + indatrank[r]);
}
model.add(sumrefs - (U - L) * isrankfullref[r] >= L);
sumrefs.end();
}
model.add(IloAllDiff(env, indatrank));
//
// set as not in clique, all the vertices that do not belong to one of the possible clique
std::map < Vertex*, bool> okforclique;
for (Vertex* v : this->inst_->vertices_) okforclique[v] = false;
for (Clique* c : this->cliques_) {
for (Vertex* v : c->vertices_) {
okforclique[v] = true;
}
}
for (Vertex* v : this->inst_->vertices_) {
if (!okforclique[v]) {
for (int r = 0; r <= L; r++) {
model.add(indatrank[r] != indv[v]);
}
}
}
//
// load model in the CP solver
IloCP cp(model);
//
// provide starting point with greedy solution
//
IloSolution sol(env);
for (Vertex* v : this->inst_->vertices_) {
if (this->bestrank_[v] - 1 >= L + 1) {
sol.setValue(isrankfullref[this->bestrank_[v] - 1], bestisfullref_[v]);
}
sol.setValue(indatrank[this->bestrank_[v] - 1], indv[v]);
}
cp.setStartingPoint(sol);
cpuClockInit.stop();
//
// set CP parameter
cp.setParameter(IloCP::LogVerbosity, IloCP::Normal);
cp.setParameter(IloCP::Workers, 1);
cp.setParameter(IloCP::TimeLimit, timelimit - cpuClockInit.getTime());
#ifdef VERBOSE
cp.setParameter(IloCP::LogVerbosity, IloCP::Normal);
#endif
IloTimer cpuClock(env);
cpuClock.start();
try {
cp.solve();
} catch (IloException& e) {
std::cerr << e << std::endl;
}
cpuClockTotal.stop();
IloAlgorithm::Status status = cp.getStatus();
std::cout << "revorder: ----------------------------------------------------------\n" << std::endl;
std::cout << "revorder: CP optimizer solution status = " << status << std::endl;
isfeasible_ = (status == IloAlgorithm::Feasible) || (status == IloAlgorithm::Optimal);
isoptimal_ = (status == IloAlgorithm::Optimal);
if (isfeasible_) {
//
// retrieve the information on the solution process
this->objvalue_ = cp.getObjValue();
totaltime_ = cpuClock.getTime();
treatednodes_ = cp.getInfo(IloCP::NumberOfBranches);
//
// get the optimal order
for (int r = 0; r < this->inst_->nbvertices_; r++) {
this->bestrank_[this->inst_->vertices_[cp.getValue(indatrank[r])]] = r;
}
//
// get the number of references of each vertex
for (Vertex* u : this->inst_->vertices_) {
this->bestnbrefs_[u] = 0;
for (Vertex* v : u->neighbors_) {
if (this->bestrank_[v] < this->bestrank_[u]) this->bestnbrefs_[u]++;
}
}
//
// get fully referenced vertices
this->bestfullref_.clear();
this->bestnbfullref_ = 0;
this->bestisfullref_.clear();
for (Vertex* u : this->inst_->vertices_) {
if (this->bestnbrefs_[u] >= this->inst_->U()) {
this->bestisfullref_[u] = true;
this->bestfullref_.push_back(u);
this->bestnbfullref_++;
} else this->bestisfullref_[u] = false;
}
//
// summary of cp execution
std::cout << "revorder: total cpu time = " << cpuClockTotal.getTime() << " s" << std::endl;
std::cout << "revorder: initialization cpu time = " << cpuClockInit.getTime() << " s" << std::endl;
std::cout << "revorder: number of branches explored = " << treatednodes_ << std::endl;
std::cout << "revorder: value of the objective function = " << objvalue_ << std::endl;
std::cout << "revorder: verification: number of part. ref. vertices = " << this->inst_->nbvertices_ - this->inst_->L() - this->bestnbfullref_ << std::endl;
} else {
std::string fileInfeasible("InfeasibleModel.lp");
cp.exportModel(fileInfeasible.c_str());
std::cout << "revorder: no feasible solution was found during the optimization!" << std::endl;
std::cout << "revorder: check the file " << fileInfeasible << " to see the corresponding model" << std::endl;
}
//
// delete CP objects
cp.end();
model.end();
env.end();
return isfeasible_;
}
//
// create the cplex model for the IP formulation described in Bodur an MacNeil, 2019
void DiscretizationSolver::defineminpartial_vertexrank(IloModel & model) {
IloEnv env = model.getEnv();
char name[50];
int nbvertices = this->inst_->nbvertices_;
int L = this->inst_->L();
int U = this->inst_->U();
//////////////////////////////////////////////////////////////////////////////
// Declare the variables
//////////////////////////////////////////////////////////////////////////////
//
// variables that set the rank of each vertex in the order
// - hasrank_[v,k] = 1 if vertex i has rank k in the discretization order
// in this model, we use these variables only for the first L vertices
// of the cliques (if modeltype <= 1)
for (Vertex* v : this->inst_->vertices_) {
hasrank_[v] = IloBoolVarArray(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
sprintf(name, "hasrank_%i_%i", v->id_, k);
hasrank_[v][k].setName(name);
}
}
//
// isrankfullref[k] =1 if vertex v is fully-referenced and 0 otherwise
IloBoolVarArray isrankfullref(env, nbvertices);
for (int k = 0; k < nbvertices; k++) {
isrankfullref[k] = IloBoolVar(env);
sprintf(name, "isrankfullref_%i", k);
isrankfullref[k].setName(name);
}
//
// isfullrefatrank[u,k] = 1 if vertex u is fully-referenced and is at rank k
BoolVarMapArray isfullrefatrank;
for (Vertex* v : this->inst_->vertices_) {
isfullrefatrank[v] = IloBoolVarArray(env, nbvertices);
for (int k = 0; k < this->inst_->nbvertices_; k++) {
sprintf(name, "isfullrefatrank%i_%i", v->id_, k);
isfullrefatrank[v][k].setName(name);
}
}
//////////////////////////////////////////////////////////////////////////////
// Set the cplex model that will be solved
//////////////////////////////////////////////////////////////////////////////
//
// objective function
IloExpr obj(env);
obj += 1;
for (int k = 0; k < nbvertices; k++) {
obj += (1 - isrankfullref[k]);
}
model.add(IloMinimize(env, obj));
//
// each rank of the order is taken by exactly one vertex
IloRangeArray ctaryOneVertexPerRank(env);
for (int k = 0; k < nbvertices; k++) {
IloExpr sumvertices(env);
for (Vertex* v : this->inst_->vertices_) sumvertices += hasrank_[v][k];
ctaryOneVertexPerRank.add(sumvertices == 1);
sprintf(name, "ctaryOneVertexPerRank_%i", k);
ctaryOneVertexPerRank[k].setName(name);
}
model.add(ctaryOneVertexPerRank);
//
// each vertex has exactly one rank and his rank is computed
IloRangeArray ctaryOneRankPerVertex(env);
IloRangeArray ctaryComputeRank(env);
int nbcons = 0;
for (Vertex* u : this->inst_->vertices_) {
IloExpr sumhasrank(env);
for (int k = 0; k < nbvertices; k++) sumhasrank += hasrank_[u][k];
ctaryOneRankPerVertex.add(sumhasrank == 1);
sprintf(name, "ctaryOneRankPerVertex_%i", u->id_);
ctaryOneRankPerVertex[nbcons].setName(name);
}
model.add(ctaryOneRankPerVertex);
//
// Guarantee that isfullrefatrank[v][k] =1 only if v has rank k and has at least U references
IloRangeArray ctaryIsFullRefAtLevel(env);
for (int k = 0; k <= L; k++) {
ctaryIsFullRefAtLevel.add(isrankfullref[k] == 1);
}
for (int k = 0; k < this->inst_->nbvertices_; k++) {
for (Vertex* v : this->inst_->vertices_) {
ctaryIsFullRefAtLevel.add(hasrank_[v][k] - (1 - isrankfullref[k]) - isfullrefatrank[v][k] <= 0);
}
}
model.add(ctaryIsFullRefAtLevel);
//
// Discretization constraints: every vertex must be partially-referenced and those with more than U references are fully-referenced
IloRangeArray ctaryLrefs(env);
IloRangeArray ctaryClique(env);
IloRangeArray ctaryFullRef(env);
nbcons = 0;
for (Vertex* u : this->inst_->vertices_) {
//
// first deal with the vertices of the initial clique
for (int k = 0; k <= L; k++) {
IloExpr sumrefs(env);
for (Vertex* v : u->neighbors_) {
for (int l = 0; l <= k - 1; l++) sumrefs += hasrank_[v][l];
}
ctaryClique.add(sumrefs - k * hasrank_[u][k] >= 0);
}
//
// then deal with the rest of the order
for (int k = L + 1; k < nbvertices; k++) {
IloExpr sumrefs(env);
for (Vertex* v : u->neighbors_) {
for (int l = 0; l <= k - 1; l++) sumrefs += hasrank_[v][l];
}
ctaryLrefs.add(sumrefs - L * hasrank_[u][k] >= 0);
ctaryFullRef.add(sumrefs - U * isfullrefatrank[u][k] >= 0);
}
}
model.add(ctaryClique);
model.add(ctaryLrefs);
model.add(ctaryFullRef);
//
// set as not in clique, all the vertices that do not belong to one of the possible clique