Newer
Older
}
//
// scan all the bb nodes in the queue to delete the dominated ones if
// option is activated
if ((this->checkdominancealltree_) && (this->checkdominance_)) {
for (BBNode* n : childnodes) {
if (isdominated[n]) continue;
for (int deltacost = -this->maxdeltadominance_ ;
deltacost <= this->maxdeltadominance_; deltacost++) {
if (n->cost_ <= deltacost) continue;
if (!isdominated[n]) {
isdominated[n] =
checkdominancewithlist(n,
this->activenodes_[n->cost_ - deltacost]);
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
}
//
// delete the redundant nodes and add the others to the node queue
for (BBNode* n : childnodes) {
if (isdominated[n]) {
delete n;
} else {
// make sure to maintain the heap while pushing the new node in the queue
this->bbnodes_++;
n->setid(this->bbnodes_);
node.addtochildren(n);
n->postpropagation();
this->bbnodesqueue_.push_back(n);
this->activenodes_[n->cost_].push_back(n);
this->nbactivenodes_++;
if (this->exploredepth_) {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesnborderedcompare);
} else if (this->explorebest_) {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
} else if (this->exploredepthbeforebest_) {
if (!this->isfeasible_) {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesnborderedcompare);
} else {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
std::cout << "revorder: bb: " << this->bbnodesqueue_.size() << " nodes in the queue" << std::endl;
#endif
}
//
// check the dominance of input node with every node in the input vector
bool BBSolver::checkdominancewithlist(BBNode* n1,
std::vector<BBNode*>& nodelist) {
std::vector<BBNode*>::iterator itnode = nodelist.begin();
while (itnode < nodelist.end()) {
BBNode* n2 = (*itnode);
if (this->dominates(*n2, *n1)) {
//
std::cout << "revorder: bb: prune node: dominance of potential child ";
if (n2->istreated_) std::cout << " with treated node" << std::endl;
else std::cout << "with queue " << std::endl;
std::cout << "revorder: bb: depth: dominant = " << n2->depth() << ", dominated = " << n1->depth() << std::endl;
std::cout << "revorder: bb: costs: dominant = " << n2->cost_ << ", dominated = " << n1->cost_ << std::endl;
#endif
//
return true;
} else if (this->dominates(*n1, *n2)) {
//
std::cout << "revorder: bb: prune node: dominance of created node ";
if (n2->istreated_) std::cout << " already treated" << std::endl;
else std::cout << "still in queue" << std::endl;
std::cout << "revorder: bb: depth: dominant = " << n1->depth() << ", dominated = " << n2->depth() << std::endl;
std::cout << "revorder: bb: costs: dominant = " << n1->cost_ << ", dominated = " << n2->cost_ << std::endl;
#endif
//
erasenodefromall(*itnode);
} else {
itnode++;
}
//
// erase a node from every list where it appears
void BBSolver::erasenodefromall(BBNode* node) {
// first erase it from the list of children of its father
for (auto itn = node->getfather()->children_.begin();
itn < node->getfather()->children_.end(); itn++) {
if (*itn == node) {
node->getfather()->children_.erase(itn);
break;
}
// then erase its descendants if any
for (BBNode* child: node->children_) {
this->erasealldescendants(child);
}
// erase from active nodes
for (auto itn = activenodes_[node->cost_].begin();
itn < activenodes_[node->cost_].end(); itn++) {
if (*itn == node) {
activenodes_[node->cost_].erase(itn);
this->nbactivenodes_--;
break;
}
if (!node->istreated_) {
for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
if (*itn == node) {
bbnodesqueue_.erase(itn);
break;
}
// erase all the descendants of a node from all list of nodes and delete them
void BBSolver::erasealldescendants(BBNode* node) {
for (BBNode* child: node->children_) {
erasealldescendants(child);
}
for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) {
if (*itn == node) {
activenodes_[node->cost_].erase(itn);
this->nbactivenodes_--;
break;
}
if (!node->istreated_) {
for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
if (*itn == node) {
bbnodesqueue_.erase(itn);
break;
}
// compute a dual bound from the partial order described in the input node
double BBSolver::computedualbound(BBNode& node) {
//
// compute a simple bound by just looking at the ordered vertices
//
// first get the number of partially referenced vertices in the order
int nbpartials = node.nbordered() - node.nbfullref() - this->inst_->L();
//
// then aknowledge that vertices with less than U neighbors cannot be
// fully-referenced; but beware that we know that one potential child will
// be partially-referenced, so do not count it twice
int nbpotentialpartials = 1;
for (Vertex* v: this->inst_->vertices_) {
if (!node.isordered(v)) {
if (v->degree_ <= this->inst_->U() - 1) {
if (node.ispotentialchild_[v]) {
nbpartials++;
nbpotentialpartials = 0;
}
// finally for each edge linking two vertices with exactly U neigbors, one
// will be partially referenced; still need to beware with the potential
// children of the node
std::map<Vertex*,bool> inpartialedge;
for (Vertex* u: this->inst_->vertices_) inpartialedge[u] = false;
for (Vertex* u: this->inst_->vertices_) {
if (!node.isordered(u)
&& (!inpartialedge[u])
&& (u->degree_ == this->inst_->U())) {
for (Vertex* v: u->neighbors_) {
if (!node.isordered(v)
&& (!inpartialedge[v])
&& (v->degree_ == this->inst_->U())) {
nbpartials++;
inpartialedge[u] = true;
inpartialedge[v] = true;
if (node.ispotentialchild_[v]) nbpotentialpartials = 0;
break;
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
}
}
}
nbpartials += nbpotentialpartials;
int trivialbound = nbpartials;
//
// update current dual bound if improved
node.dualbound_ = std::max(node.dualbound_, trivialbound);
if ((!this->improvedualbound_) && (!this->userelaxbound_) ) {
return node.dualbound_;
}
/////////////////////////////////////////////////////////////////////////////
// Improve the trivial bound by considering several cuts
/////////////////////////////////////////////////////////////////////////////
if (this->improvedualbound_) {
for (Vertex* v : this->inst_->vertices_) {
if (node.isordered(v)) {
if (node.nbrefs(v) >= this->inst_->U()) {
this->ispartial_[v].setBounds(0, 0);
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
}
else if (node.mustbefullref_[v]) {
this->ispartial_[v].setBounds(0, 0);
}
else if (v->degree_ <= this->inst_->U() - 1) {
this->ispartial_[v].setBounds(1,1);
}
else {
this->ispartial_[v].setBounds(0, 1);
}
}
//
// at least one among the potential children will be partially referenced
IloExpr sumpartialinpotentials(this->envdual_);
for (Vertex* v : node.potentialchildren_) {
sumpartialinpotentials += this->ispartial_[v];
}
IloRange ctPartialsInPotentials(this->envdual_, -sumpartialinpotentials, -1);
this->modeldual_.add(ctPartialsInPotentials);
sumpartialinpotentials.end();
//
// solve the IP
this->cplexdual_.solve();
IloAlgorithm::Status statusimproved = this->cplexdual_.getStatus();
int improvedbound = this->inst_->nbvertices_;
if (statusimproved==IloAlgorithm::Infeasible) {
node.dualbound_ = this->inst_->nbvertices_;
std::cout << "revorder: bb: improved dual bound IP is infeasible: prune the node" << std::endl;
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
else {
improvedbound = ceil(this->cplexdual_.getObjValue()) - this->inst_->L();
if (improvedbound > node.dualbound_ ){
node.dualbound_ = improvedbound;
}
}
this->modeldual_.remove(ctPartialsInPotentials);
ctPartialsInPotentials.end();
#ifdef VERBOSE
std::cout << "revorder: node dual bound = " << improvedbound << " ; trivialbound = " << trivialbound << std::endl;
#endif
}
/////////////////////////////////////////////////////////////////////////////
// Compute a dual bound by solving the LP relaxation of a chosen model
/////////////////////////////////////////////////////////////////////////////
// Start searching for better bounds only if trivial bound is not too far from primal bound and a significant number of nodes have been treated to improve primal bound
if ( (this->userelaxbound_) && (this->treatednodes_ >= 1000) && (trivialbound * 2.0 >= this->primalbound_)) {
// fix all the variables related to the vertices that already in the current incomplete order
for (Vertex* v1 : this->inst_->vertices_) {
if (node.rank(v1) >= this->inst_->L() + 2) {
if (node.nbrefs(v1) >= this->inst_->U()) {
isfullref_[v1].setBounds(1, 1);
}
else if ((node.rank(v1) >= 1) && (node.rank(v1) <= this->inst_->L()+1)) {
isfullref_[v1].setBounds(1, 1);
}
else {
if (node.mustbefullref_[v1] == true) {
isfullref_[v1].setBounds(1,1);
}
for (Vertex* v2 : v1->neighbors_) {
if ((node.rank(v1) < 0) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(0, 1);
else if ( (node.rank(v1) < 0) && (node.rank(v2) >= 1)) isbefore_[v1][v2].setBounds(0, 0);
else if ((node.rank(v1) >= 1) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(1, 1);
else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) < node.rank(v2)) ) isbefore_[v1][v2].setBounds(1, 1);
else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) > node.rank(v2)) ) isbefore_[v1][v2].setBounds(0, 0);
else {
cout << node.rank(v1) << "; " << node.rank(v2) << endl;
throwError("abnormal rank values");
}
}
}
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
IloExpr sumnotallfullref(this->env_);
int maxnbfullref;
for (Vertex* v : node.potentialchildren_) {
sumnotallfullref += isfullref_[v];
}
maxnbfullref = node.potentialchildren_.size() - 1;
IloRange cons(this->env_, sumnotallfullref, maxnbfullref);
relax_.add(cons);
cplexrelax_.setParam(IloCplex::SimDisplay, 0);
// cplexrelax_.setParam(IloCplex::Param::ParamDisplay, 0);
cplexrelax_.setParam(IloCplex::Threads, 1);
cplexrelax_.setParam(IloCplex::MIPDisplay, 0);
cplexrelax_.setParam(IloCplex::TuningDisplay, 0);
cplexrelax_.setOut(cplexrelax_.getEnv().getNullStream());
bool updateprimal_ = false;
if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
cplexrelax_.setParam(IloCplex::NodeLim, 9223372036800000000);
cplexrelax_.setParam(IloCplex::MIPSearch, 1);
if ((this->modeltype_ == CCG) || (this->modeltype_ == WITNESS)) {
cplexrelax_.use(CyclesLazyConstraintsBB(cplexrelax_.getEnv(), *(this->inst_), *this));
}
}
else {
cplexrelax_.setParam(IloCplex::NodeLim, 0);
}
cplexrelax_.solve();
IloAlgorithm::Status status = cplexrelax_.getStatus();
//
// if the relaxation is infeasible, the node can be pruned : set dual bound to negative value to state this
if (status != IloAlgorithm::Infeasible) {
int relaxbound = ceil(cplexrelax_.getBestObjValue());
//
std::cout << "revorder: bb: trivial dual bound = " << trivialbound << " ; relaxation bound = " << relaxbound;
std::cout << " (best primal bound = " << this->primalbound_ << ")" << std::endl;
#endif
if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
if (relaxbound < this->primalbound_) {
this->primalbound_ = relaxbound;
std::cout << "best primal bound updated = " << this->primalbound_ << std::endl;
this->bestnbfullref_ = this->inst_->nbvertices_ - this->primalbound_;
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
for (Vertex* v : this->inst_->vertices_) {
adjlist[v] = std::vector<Vertex*>();
}
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : u->neighbors_) {
if (cplexrelax_.getValue(this->isbefore_[u][v]) >= 1 - tolerance) {
adjlist[u].push_back(v);
}
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
}
//
// search for the root of the digraph
Vertex* root = nullptr;
for (Vertex* v : this->inst_->vertices_) {
if (node.rank(v) == 1) {
root = v;
}
}
// Search for a topological order that will be valid only if the digraph is
// acyclic
std::vector<Vertex*> reverseorder;
std::map<Vertex*, int> rank;
this->topologicalorder(root, adjlist, reverseorder, rank);
// determine whether the digraph is cyclic or not
//
std::vector<std::pair<Vertex*, Vertex*> > reverseedges;
bool iscyclic = this->getreverseedges(adjlist, reverseorder, rank, reverseedges);
if (iscyclic) {
std::cout << "revorder: error: the final integer solution is cyclic" << std::endl;
throw;
}
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = rank[v];
}
}
}
//
// update current dual bound if improved
if (relaxbound > node.dualbound_) {
node.dualbound_ = relaxbound;
//
std::cout << "revorder: bb: new dual bound = " << relaxbound << std::endl;
std::cout << "revorder: bb: number of ordered vertices = " << node.nbordered() << std::endl;
#endif
//
}
}
else{
node.dualbound_ = this->inst_->nbvertices_;
std::cout << "revorder: bb: dual bound relaxation is infeasible: prune the node" << std::endl;
relax_.remove(cons);
cons.end();
}
return node.dualbound_;
// initialize the IP model for improved dual bound
void BBSolver::initializedualboundIP() {
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
this->modeldual_ = IloModel(this->envdual_);
this->cplexdual_ = IloCplex(this->modeldual_);
IloExpr obj(this->envdual_);
char name[256];
for (Vertex* v : this->inst_->vertices_) {
this->ispartial_[v] = IloBoolVar(this->envdual_);
sprintf(name, "ispartial%i", v->id_);
this->ispartial_[v].setName(name);
obj += this->ispartial_[v];
}
this->modeldual_.add(IloMinimize(this->envdual_, obj));
obj.end();
//
// if we could identify cliques that contain at least one partially-referenced vertex, add a constraint to enforce this; the two-cliques need not be checked
for (Clique* c : this->cliqueswithpartialref_) {
IloExpr sumpartialsinclique(this->envdual_);
for (Vertex* v : c->vertices_) sumpartialsinclique += this->ispartial_[v];
this->modeldual_.add(sumpartialsinclique >= this->nbpartialinclique_[c]);
sumpartialsinclique.end();
}
//
// if we could identify cycles composed of low degree vertices add a cut specifying that the vertices included in such cycles must include at least as many partially referenced vertices as there are cycles
IloRangeArray ctaryLowDegreeCycles(this->envdual_);
int nbcons = 0;
for (int i = 0; i < this->lowdegreecycles_.size(); i++) {
std::vector<Vertex*> cycle = this->lowdegreecycles_[i];
IloExpr sumpartialsincycle(this->envdual_);
for (Vertex* v : cycle) {
sumpartialsincycle += this->ispartial_[v];
ctaryLowDegreeCycles.add(sumpartialsincycle >= this->nbpartialsincycle_[i]);
sprintf(name, "ctaryLowDegreeCycles_%i", nbcons);
ctaryLowDegreeCycles[nbcons++].setName(name);
sumpartialsincycle.end();
}
this->modeldual_.add(ctaryLowDegreeCycles);
ctaryLowDegreeCycles.end();
//
// load the integer problem and set display parameters
this->cplexdual_.setParam(IloCplex::MIPDisplay, 0);
this->cplexdual_.setParam(IloCplex::SimDisplay, 0);
this->cplexdual_.setParam(IloCplex::TiLim, 10);
this->cplexdual_.setParam(IloCplex::Threads, 1);
// this->cplexdual_.setParam(IloCplex::Param::ParamDisplay, 0);
}