Newer
Older
/********************************************************************************************
Name: DiscretizationSolver
Discrete optimization for graph discretization
Author: J.Omer
Sources: C++
License: GNU General Public License v.2
History:
*********************************************************************************************/
#include "bbsolver.hpp"
ILOLAZYCONSTRAINTCALLBACK2(CyclesLazyConstraintsBB,
Instance &, inst,
DiscretizationSolver&, solver) {
std::cout << "revorder: check lazy dicycle constraints" << std::endl;
// Search for cycles in the current solution digraph
//
// generate the adjacency lists of the vertices corresponding to the current
// cplex solution
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
std::map<Vertex*, int > nbrefs;
for (Vertex* v : inst.vertices_) {
adjlist[v] = std::vector<Vertex*>();
nbrefs[v] = 0;
}
for (Vertex* u : inst.vertices_) {
if (solver.modeltype_ == WITNESS) {
if (getValue(solver.isvertexinclique(u) >= 1 - tolerance)) continue;
}
for (Vertex* v : u->neighbors_) {
if (getValue(solver.isbefore(u, v)) >= 1 - tolerance) {
adjlist[u].push_back(v);
nbrefs[v]++;
}
}
}
//
// search for the root of the digraph
Vertex* root = nullptr;
int minnbrefs = inst.U();
if (solver.modeltype_ == WITNESS) {
if (getValue(solver.isvertexinclique(v) >= 1 - tolerance)) {
root = v;
break;
}
} else {
for (Vertex* v : inst.vertices_) {
if (nbrefs[v] < minnbrefs) {
minnbrefs = nbrefs[v];
root = v;
break;
}
}
//
// call the enumeration of cycles, returns false if there are none
std::vector<std::vector<Vertex*> > cycles;
bool iscyclic = solver.enumeratecycles(adjlist, root, cycles);
// Look for dicycle inequalities : we restrict the search to the dicycles
// that contain at least one edge in the distance graph
// besides that, the search is performed using brute force
int nbaddedcuts = 0;
IloEnv env = getEnv();
if (iscyclic) {
for (std::vector<Vertex*> path : cycles) {
IloExpr sumedges(env);
int cyclelength = path.size();
Vertex* u = path.back();
for (int i = 0; i < cyclelength; i++) {
Vertex* v = path[i];
sumedges += solver.isbefore(u, v);
u = v;
}
if ((solver.modeltype_ == WITNESS) && (cyclelength <= inst.L() + 1)) {
add(sumedges - solver.isvertexinclique(path.front())
<= cyclelength - 1).end();
nbaddedcuts++;
} else {
add(sumedges <= cyclelength - 1).end();
nbaddedcuts++;
}
std::cout << "revorder: number of violated dicycle constraints : " << nbaddedcuts << std::endl;
std::cout << "revorder: the graph is acyclic " << std::endl;
}
/*************************************************************************************************************************************************************/
//
// sort the nodes by ascending number of ordered vertices
bool bbnodesnborderedcompare(BBNode* n1, BBNode* n2) {
return (n1->nbordered() < n2->nbordered());
}
bool bbnodesbestcompare(BBNode*n1, BBNode* n2) {
return (static_cast<float>(n1->cost_) / n1->nbordered()
> static_cast<float>(n2->cost_) / n2->nbordered());
}
// Public methods
//
// constructor and destructor
//
// constructor used only for the root
BBNode::BBNode(Instance& inst):
depth_(0),
inst_(&inst),
nbordered_(0),
nbfullref_(0),
istreated_(true) {}
//
// constructor used only for the initial cliques
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
BBNode::BBNode(Instance& inst,
BBNode* root,
Clique& c,
bool branchonsmallerindex):
depth_(1),
father_(root),
inst_(&inst),
nbordered_(0),
nbfullref_(0),
istreated_(false) {
this->orderedvertices_.clear();
for (Vertex* v : inst.vertices_) {
this->rank_[v] = -1;
this->nbrefs_[v] = 0;
this->isfullref_[v] = false;
this->isordered_[v] = false;
this->ispotentialchild_[v] = false;
this->mustbefullref_[v] = false;
this->maxrefs_[v] = v->degree_;
}
int currentrank = 1;
for (Vertex* u : c.vertices_) {
this->rank_[u] = currentrank++;
this->orderedvertices_.push_back(u);
this->switchtoordered(u);
this->nbordered_++;
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// update the number of references of the neighbors of the vertex
for (Vertex* v : u->neighbors_) {
if (!this->isordered_[v]) {
this->nbrefs_[v]++;
}
}
}
// record the list of partially and fully referenced (unordered) vertices
for (Vertex* v : inst.vertices_) {
if (!this->isordered_[v]) {
// record the list of unordered fully-referenced vertices
if (this->nbrefs_[v] >= inst.U()) {
this->isfullref_[v] = true;
this->fullrefs_.push_back(v);
} else if (this->nbrefs_[v] >= inst.L()) {
// add partially referenced vertices to the list of potential choices
// for branching
if (branchonsmallerindex) {
bool largerindex = true;
Vertex* u = c.vertices_.back();
if (!u->isneighbor(v)) {
if (u->id_ >= v->id_) largerindex = false;
}
//
// to break symmetries, make sure that the chosen potential child
// is always that with biggest index
if (largerindex) {
this->ispotentialchild_[v] = true;
this->potentialchildren_.push_back(v);
// partially referenced vertices with less than U neighbors can
// be ordered right away since they will never be fully referenced
if (this->maxrefs_[v] <= inst.U() - 1) {
this->readytoorder_.push_back(v);
std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
}
} else {
this->mustbefullref_[v] = true;
// if a vertex must be fully-referenced, but it has exactly U
// neighbors, it will for sure come after all its neighbors in
// the order
if (this->maxrefs_[v] <= inst.U()) {
for (Vertex* u : v->neighbors_) {
if (this->mustbefullref_[u]) {
if (this->maxrefs_[u] >= inst.U()+1) {
this->maxrefs_[u]--;
}
} else {
this->maxrefs_[u]--;
}
}
}
} else {
this->ispotentialchild_[v] = true;
this->potentialchildren_.push_back(v);
// partially referenced vertices with less than U neighbors can be
// ordered right away since they will never be fully referenced
if (this->maxrefs_[v] <= inst.U() - 1) {
this->readytoorder_.push_back(v);
std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
}
this->dualbound_ = -1;
root->addtochildren(this);
// Make a copy of the input BB node: used for every other node
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
BBNode::BBNode(BBNode& node): id_(node.id_),
depth_(node.depth_+1),
father_(&node),
inst_(node.inst_),
nbordered_(node.nbordered_),
nbfullref_(node.nbfullref_),
istreated_(false) {
cost_ = node.cost_;
dualbound_ = node.dualbound_;
primalbound_ = node.primalbound_;
for (Vertex* v : inst_->vertices_) {
rank_[v] = node.rank_.at(v);
isordered_[v] = node.isordered_.at(v);
nbrefs_[v] = node.nbrefs_.at(v);
isfullref_[v] = node.isfullref_.at(v);
ispotentialchild_[v] = node.ispotentialchild_.at(v);
mustbefullref_[v] = node.mustbefullref_.at(v);
maxrefs_[v] = node.maxrefs_.at(v);
}
fullrefs_.clear();
orderedvertices_.clear();
potentialchildren_.clear();
children_.clear();
for (Vertex* v : node.readytoorder_) readytoorder_.push_back(v);
for (Vertex* v : node.fullrefs_) fullrefs_.push_back(v);
for (Vertex* v : node.orderedvertices_) orderedvertices_.push_back(v);
for (Vertex* v : node.potentialchildren_) potentialchildren_.push_back(v);
}
//
// Destroy the node
BBNode::~BBNode() {
}
//
// remove a vertex from the list of potential choice for branching
void BBNode::removefrompotentialchildren(Vertex* v) {
//
// no need to proceed if the vertex is not marked as potential child
if (!this->ispotentialchild_[v]) return;
this->ispotentialchild_[v] = false;
std::vector<Vertex*>::iterator itv = this->potentialchildren_.begin();
while (itv < this->potentialchildren_.end()) {
if (*itv == v) {
this->potentialchildren_.erase(itv);
break;
} else {
itv++;
// detect error if the vertex was not found in the list of potential
// children
if (itv == this->potentialchildren_.end()) {
std::cout << "revorder: bb: did not find a potential child in the list"
<< '\n';
throw;
}
}
itv = this->readytoorder_.begin();
while (itv < this->readytoorder_.end()) {
if (*itv == v) {
this->readytoorder_.erase(itv);
break;
}
//
// assign the next available rank to the input vertex
void BBNode::assignnextrank(Vertex* u) {
//
// assign the next available rank
for (Vertex* v : this->orderedvertices_) {
if (u == v) {
std::cout << "Les ennuis commencent ici." << std::endl;
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
}
this->rank_[u] = this->nbordered_ + 1;
this->orderedvertices_.push_back(u);
this->switchtoordered(u);
this->nbordered_++;
this->removefrompotentialchildren(u);
if (this->nbrefs_[u] <= this->inst_->L() - 1) {
std::cout << "revorder: bb: trying to assign a rank to a vertex with less"
" than L references" << '\n';
throw;
} else if (this->nbrefs_[u] >= this->inst_->U()) {
this->nbfullref_++;
}
// update the number of references of the neighbors of v
for (Vertex* v : u->neighbors_) {
if (this->rank_[v] < 0) {
this->nbrefs_[v]++;
// add partially-referenced vertices to the list of potential choices
// for branching
if (this->nbrefs_[v] == this->inst_->L()) {
this->potentialchildren_.push_back(v);
this->ispotentialchild_[v] = true;
// partially referenced vertices with less than U neighbors can be
// ordered right away since they will never be fully referenced
if (this->maxrefs_[v] <= this->inst_->U() - 1) {
this->readytoorder_.push_back(v);
std::cout << "revorder: bb: order vertex " << v->id_ << " without branching, maximum nb of references = " << this->maxrefs_[v] << std::endl;
}
// a vertex is fully-referenced if it has more than U references, and it
// is not a potential choice for branching anymore
if (this->nbrefs_[v] == this->inst_->U()) {
this->isfullref_[v] = true;
this->fullrefs_.push_back(v);
if (this->ispotentialchild_[v]) this->removefrompotentialchildren(v);
}
// get the current objective value at a node, depending on the ordered vertices
void BBNode::setnodecost(Problem pb) {
int nbpartials = 0;
for (Vertex* u : this->inst_->vertices_) {
if (this->isordered_[u]) {
if (this->nbrefs_[u] <= this->inst_->U() - 1) nbpartials += 1;
// a bb node n1 dominates another one, n2, if the corresponding partial
// solution has a smaller or equal cost but its list of ordered vertices
// contains that of n2
bool BBSolver::dominates(BBNode& n1, BBNode& n2) {
if ( n2.cost_ < n1.cost_ ) {
return false;
}
for (Vertex* v : n2.orderedvertices_) {
if (!(n1.isordered(v))) {
return false;
// propagate the set of ordered vertices by iteratively ordering
// fully-referenced vertices
void BBNode::prepropagation() {
#ifdef VERBOSE
// iteratively propagate while there are fully-referenced vertices
while (!this->fullrefs_.empty()) {
Vertex* u = this->fullrefs_.back();
this->fullrefs_.pop_back();
this->isfullref_[u] = false;
this->assignnextrank(u);
}
this->setnodecost(MINPARTIAL);
}
//
// propagate the set of ordered vertices by iteratively ordering vertices
// as long as there is either at least one unordered vertex with more than U
// references or exactly one unordered vertex with exactly U references
void BBNode::postpropagation() {
#ifdef VERBOSE
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
//
// no need of propagation if all the vertices are ordered
if (this->nbordered_ == this->inst_->nbvertices_) return;
//
// iteratively propagate while there are fully-referenced vertices or
// exactly one partially-referenced vertex
while (true) {
bool ispropagate = false;
Vertex* u;
if (!this->fullrefs_.empty()) {
// add a vertex with more than U references
u = this->fullrefs_.back();
this->fullrefs_.pop_back();
this->isfullref_[u] = false;
ispropagate = true;
} else if (!this->readytoorder_.empty()) {
// if there is a partially referenced vertex with less than U
// neighbors, it can be ordered right away: it will never be fully
// referenced
u = this->readytoorder_.back();
this->readytoorder_.pop_back();
ispropagate = true;
} else if (this->potentialchildren_.size() == 1) {
// if there is exactly one partially referenced vertex: add it to the
// order
u = this->potentialchildren_.back();
this->potentialchildren_.pop_back();
this->ispotentialchild_[u] = false;
ispropagate = true;
// add the identified vertex at the end of the order
this->assignnextrank(u);
}
//
// update the cost of the node
this->setnodecost(MINPARTIAL);
/*******************************************************************************
Class BBSolver
- an instance of BBSolver is a solver of the discretization problem using
branch-and-bound
*******************************************************************************/
// Public methods
//
// constructor and destructor
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
BBSolver::BBSolver(Instance* inst,
Problem pb,
std::string optionfile,
float timelimit):
DiscretizationSolver(inst,
BRANCHANDBOUND,
pb,
NONE,
optionfile,
timelimit) {
this->isfeasible_ = false;
this->isoptimal_ = false;
this->bbnodes_ = 1;
this->treatednodes_ = 0;
this->nbactivenodes_ = 0;
this->primalbound_ = inst->nbvertices_;
if (!optionfile.empty())
{
std::ifstream infile(optionfile.c_str());
if (!infile.is_open()) {
throwError("revorder: error: the option file could not be opened");
}
// read the file line by line
// one line contains the data relative to one option
std::string line;
while (std::getline(infile, line))
std::istringstream iss(line);
std::string optionname;
char buf[100];
int optionvalue;
std::string optionstring;
//read the line and detect format errors
if (!(iss >> buf)){
std::cerr << "revorder: error: there is a mistake with the format of "
"the option file" <<std::endl;
throw;
} // error
optionname = std::string(buf);
if (optionname.find("relaxmodel") != std::string::npos) {
if (!(iss >> buf)){
std::cerr << "revorder: error: there is a mistake with the format "
"of the option file" <<std::endl;
throw;
optionstring = std::string(buf);
if (!strcmp(optionstring.c_str(),"ccg"))
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
else if (!strcmp(optionstring.c_str(),"cycles"))
{
this->modeltype_ = CYCLES;
}
else if (!strcmp(optionstring.c_str(),"ranks"))
{
this->modeltype_ = RANKS;
}
else if (!strcmp(optionstring.c_str(),"vertexrank"))
{
this->modeltype_ = VERTEXRANK;
}
else if (!strcmp(optionstring.c_str(),"witness"))
{
this->modeltype_ = WITNESS;
}
continue;
}
if (!(iss >> optionvalue)){
std::cerr << "revorder: error: there is a mistake with the format of "
"the option file" <<std::endl;
throw;
} // error
//
if (optionname.find("branchonsmallerindex") !=std::string::npos) {
branchonsmallerindex_ = (bool) optionvalue;
continue;
}
else if (optionname.find("prunesameneighbors") !=std::string::npos) {
prunesameneighbors_ = (bool) optionvalue;
continue;
}
else if (optionname.find("checkdominance") !=std::string::npos) {
if (optionname.find("checkdominancealltree") !=std::string::npos) {
checkdominancealltree_ = (bool) optionvalue;
continue;
}
checkdominance_ = (bool) optionvalue;
continue;
}
else if (optionname.find("maxdeltadominance") !=std::string::npos) {
maxdeltadominance_ = optionvalue;
continue;
}
else if (optionname.find("improvedualbound") !=std::string::npos) {
improvedualbound_ = (bool) optionvalue;
continue;
}
else if (optionname.find("userelaxbound") !=std::string::npos) {
userelaxbound_ = (bool) optionvalue;
continue;
}
else if (optionname.find("explorebest") !=std::string::npos) {
explorebest_ = (bool) optionvalue;
continue;
}
else if (optionname.find("exploredepth") !=std::string::npos) {
if (optionname.find("exploredepthbeforebest") !=std::string::npos) {
exploredepthbeforebest_ = (bool) optionvalue;
continue;
}
exploredepth_ = (bool) optionvalue;
continue;
}
// set some parameters for the solution of the relaxation in dual bounds
// computations
this->modeltype_ = CCG;
this->branchonsmallerindex_ = true;
this->prunesameneighbors_ = true;
this->checkdominance_ = true;
this->checkdominancealltree_ = true;
this->maxdeltadominance_ = 1;
this->improvedualbound_ = false;
this->userelaxbound_ = false;
this->explorebest_ = false;
this->exploredepth_ = false;
this->exploredepthbeforebest_ = true;
}
//
// build a root node
this->rootnode_ = new BBNode(*inst);
cplexrelax_.end();
relax_.end();
env_.end();
cplexdual_.end();
modeldual_.end();
envdual_.end();
delete rootnode_;
}
//
// main method : called to run the branch-and-bound algorithm
int BBSolver::solve() {
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
//
// run timer
IloTimer cpuClockTotal(this->env_);
IloTimer cpuClockInit(this->env_);
cpuClockTotal.start();
cpuClockInit.start();
std::cout << std::endl;
std::cout << "revorder: "
"----------------------------------------------------------"
<< std::endl;
std::cout << "\nrevorder: bb: Run preprocessing procedures "
<< std::endl << std::endl;
//
// try and reduce the size of the instance right from the beginnning
this->inst_->computeneighbors();
this->preallocatelowdegreevertices();
//
// enumerate the potential initial cliques
if (!this->enumeratecliques(this->inst_->L() + 1)) {
this->isfeasible_ = false;
return false;
}
//
// eliminate the redundant and dominated cliques
this->eliminateredundantcliques();
//
// solve with greedy and remove cliques that cannot be completed
this->isfeasible_ = this->greedysolve();
if (!this->isfeasible_) return false;
//
// initialize the clique nodes
for (Clique* c : this->cliques_) {
BBNode* cliquenode =new BBNode(*inst_, rootnode_, *c,
this->branchonsmallerindex_);
this->bbnodesqueue_.push_back(cliquenode);
cliquenode->primalbound_ = c->greedyobjvalue_;
cliquenode->setid(this->bbnodes_);
cliquenode->setnodecost(this->problem_);
cliquenode->prepropagation();
cliquenode->postpropagation();
this->activenodes_[cliquenode->cost_].push_back(cliquenode);
this->nbactivenodes_++;
// first propagate the partial order
this->bbnodes_++;
}
std::cout << "revorder: bb: preprocessing created "
<< this->bbnodesqueue_.size()
<< " initial clique nodes" << std::endl;
//
// sort the bb nodes according to the choice of exploration method
if (this->exploredepth_ || this->exploredepthbeforebest_) {
std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(),
bbnodesnborderedcompare);
} else if (this->explorebest_) {
std::make_heap(this->bbnodesqueue_.begin(), this->bbnodesqueue_.end(),
bbnodesbestcompare);
} else {
std::cout << "revorder: bb: need to choose an exploration method in "
"branch-and-bound" << std::endl;
throw;
}
//
std::cout << "revorder: bb: greatest number of ordered vertices in a clique: ";
std::cout << ", " << this->bbnodesqueue_.front()->nbordered() << " vertices" << std::endl;
#endif
//
// compute sets of vertices that must contain at least one
// partially-referenced vertex
this->computecliquecuts(this->cliquecutsmaxsize_);
//
// identify cycle of vertices with degree smaller than U+1: in each of
// these cycles, at least one vertex is partially referenced
this->enumeratelowdegreecycles();
//
// initialize the IP used for improved dual bound
this->initializedualboundIP();
//
// set greedy solution as initial primal bound
this->primalbound_ = this->objvalue_;
//
cpuClockInit.stop();
// Run the branch-and-bound algorithm
//
// initialize the ip model to find dual bounds using the linear relaxation
// this->createrelaxationmodel(model, this->relax_);
this->defineminpartialip(this->relax_);
this->cplexrelax_ = IloCplex(this->env_);
this->cplexrelax_.extract(this->relax_);
}
//
// treat
std::cout << std::endl;
std::cout << "revorder: "
"----------------------------------------------------------"
<< std::endl;
std::cout << "\nrevorder: bb: Start the B&B algorithm " << std::endl
<< std::endl;
while (!this->bbnodesqueue_.empty()) {
this->treatnode(*(this->bbnodesqueue_.front()));
if (cpuClockTotal.getTime() > this->timelimit_) {
std::cout << "revorder: bb: time limit has been reached, stop the "
"solution algorithm" << std::endl;
break;
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
}
cpuClockTotal.stop();
// Display the results
this->totaltime_ = cpuClockTotal.getTime();
this->relaxtime_ = 0.0;
std::cout << std::endl;
std::cout << "revorder: "
"----------------------------------------------------------"
<< std::endl;
std::cout << "revorder: "
"----------------------------------------------------------"
<< std::endl;
std::cout << "\nmdjeep: Branch-and-bound solution report: " << std::endl;
if (isfeasible_) {
this->objvalue_ = this->primalbound_;
// the solution is optimal only if all the bb nodes have been treated
if (this->bbnodesqueue_.empty()) {
isoptimal_ = true;
std::cout << "revorder: the instance was solved to optimality"
<< std::endl;
} else {
std::cout << "revorder: the branch-and-bound was stopped before proving"
" optimality" << std::endl;
// reconstruct the solution by including the preallocated vertices
objvalue_ += this->inst_->preallocatedvertices_.size();
this->reconstructsolution();
//
// display the solution
std::cout << "revorder: total cpu time = " << cpuClockTotal.getTime() << " s" << std::endl;
std::cout << "revorder: initialization cpu time = " << cpuClockInit.getTime() << " s" << std::endl;
std::cout << "revorder: number of explored nodes = " << this->treatednodes_ << std::endl;
std::cout << "revorder: number of created nodes = " << this->bbnodes_ << std::endl;
std::cout << "revorder: value of the objective function = " << this->objvalue_ << " (after addition of preallocated vertices)" << std::endl;
//
// verify the resulting order is indeed a revorder
this->verifyorder(this->bestrank_);
}
else {
std::cout << "revorder: the instance is not discretizable!" << std::endl;
}
return isfeasible_;
}
//
// treat a branch-and-bound node (compute bounds and branch)
void BBSolver::treatnode(BBNode& node) {
this->treatednodes_++;
if (std::remainder(this->treatednodes_, 100) == 0) {
std::cout << "revorder: bb: treated nodes = " << this->treatednodes_
<< ", nodes in the queue = " << this->bbnodesqueue_.size()
<< ", nodes in memory = " << this->nbactivenodes_
<< ", primal bound = " << this->primalbound_ << std::endl;
}
//
// remove the bb node from the list
//
// make sure to maintain the heap first
if (this->isfeasible_) {
if (this->exploredepth_) {
std::pop_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesnborderedcompare);
} else if (this->explorebest_ || this->exploredepthbeforebest_) {
std::pop_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
} else {
if (this->explorebest_) {
std::pop_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
} else {
std::pop_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesnborderedcompare);
}
// actually remove the node from the queue
this->bbnodesqueue_.pop_back();
// update the primal bound and prune the node if it is a leaf of the
// enumeration tree
if (node.nbordered() == this->inst_->nbvertices_) {
std::cout << "revorder: bb: reached a leaf at node " << node.id() << ": depth = " << node.depth();
node.primalbound_ = this->getobjvalue(node.rank_, node.nbrefs_);
//
// update the primal bound if improved
if (node.primalbound_ < this->primalbound_) {
//
// swap the search method if this is the first feasible solution
std::cout << "revorder: bb: the primal bound has been improved, value = "
<< node.primalbound_ << std::endl;
if (!this->isfeasible_) {
if (this->exploredepthbeforebest_) {
std::make_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
this->isfeasible_ = true;
}
this->primalbound_ = node.primalbound_;
this->bestnbfullref_ = this->getnbfullref(node.rank_, node.nbrefs_);
for (Vertex* v : inst_->vertices_) {
this->bestrank_[v] = node.rank(v);
}
// otherwise, compute dual and primal bound and prepare for next node
// prune the node if no potential child node
if (node.potentialchildren_.empty()) {
//
std::cout << "revorder: bb: prune node " << node.id() << ": ";
std::cout << ": no feasible solution on this branch" << std::endl;
#endif
//
this->erasenodefromall(&node);
} else {
// compute a dual bound based on the ordered vertices
this->computedualbound(node);
//
// prune the node by using bounds
if (node.dualbound_ >= this->primalbound_) {
std::cout << "revorder: bb: prune node " << node.id() << ": ";
std::cout << "using bounds: primal = " << this->primalbound_;
std::cout << " ; dual = " << node.dualbound_ << std::endl;
#endif
this->erasenodefromall(&node);
} else {
// otherwise, create new nodes by branching
this->branch(node);
node.istreated_ = true;
// if (!this->checkdominancealltree_) {
// this->erasenodefromall(&node);
// }
}
//
// treat next node in the queue
// since it is a heap, the front node is always the greatest in the
// implemented order
BBNode* nextnode = this->bbnodesqueue_.front();
std::cout << '\n' << "revorder: bb: treat node " << nextnode->id() << " ; depth = " << nextnode->depth() << " ; ";
std::cout << nextnode->nbordered() << " ordered vertices ; " << nextnode->nbpartialref() << " partially referenced vertices" << std::endl;
}
#endif
}
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
// create the children of the input node
// propagate the order starting from each incomplete order to detect
// dominatedorders
std::vector<BBNode*> childnodes;
std::map<BBNode*, bool> isdominated;
std::map<Vertex*, bool> issymmetric;
//
// we start by checking diverse pruning rules that need to be applied
// before dominance
for (int i = 0; i < node.potentialchildren_.size() ; i++) {
Vertex* u = node.potentialchildren_[i];
issymmetric[u] = false;
if (!this->prunesameneighbors_) continue;
for (int j = 0; j < i; j++) {
Vertex* v = node.potentialchildren_[j];
if (issymmetric[v]) continue;
// if two vertices that can be chosen for branching have the exact same
// unordered neighbors, only that with smaller number of references
// needs to be considered for branching at this stage
bool sameneighbors = true;
for (Vertex* neighbor : u->neighbors_) {
if (!node.isordered(neighbor)) {
if ( !v->isneighbor_[neighbor] ) {
sameneighbors = false;
break;
}
}
}
if (sameneighbors) {
std::cout << "revorder: bb: prune node: two potential children have same neighbors: vertices " << u->id_ << " and " << v->id_ << std::endl;
if (node.nbrefs_[u] < node.nbrefs_[v]) {
issymmetric[v] = true;
} else if (node.nbrefs_[v] < node.nbrefs_[u]) {
issymmetric[u] = true;
} else {
if (u->id_ < v->id_) issymmetric[v] = true;
else if (v->id_ < u->id_) issymmetric[u] =true;
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
}
for (Vertex* v : node.potentialchildren_) {
if (issymmetric[v]) continue; // do not consider the vertices that are
// symmetric
BBNode* child = new BBNode(node);
//
// in MINPARTIAL, we can always make the arbitrary decision that if a
// vertex must be ordered when it is still partially referenced, then it
// is the vertex with smallest index among all the potential children; as
// a consequence the vertices with smaller index must be removed from the
// list of potential children
if ( this->branchonsmallerindex_ ) {
std::vector<Vertex*>::iterator itv = child->potentialchildren_.begin();
while (itv < child->potentialchildren_.end()) {
if ( ((*itv)->id_ < v->id_) ) {
child->ispotentialchild_[*itv] = false;
child->potentialchildren_.erase(itv);
child->mustbefullref_[*itv] = true;
//
// if a vertex must be fully-referenced, but it has exactly U
// neighbors, it will for sure come after all its neighbors in the
// order
if (child->maxrefs_[*itv] <= this->inst_->U()) {
for (Vertex* u : v->neighbors_) {
if (child->mustbefullref_[u]) {
if (child->maxrefs_[u] >= this->inst_->U()+1) {
child->maxrefs_[u]--;
child->assignnextrank(v);
child->prepropagation();
isdominated[child] = false;
childnodes.push_back(child);
}
//
// check for classical dominance
for (BBNode* n1 : childnodes) {
if (!this->checkdominance_) continue; // do not check dominance if option
// is deactivated
if (isdominated[n1]) continue;
for (BBNode* n2 : childnodes) {
if (n2 == n1) {
continue;
} else if (isdominated[n2]) {
continue;
} else if (this->dominates(*n2, *n1)) {
// classical domination
isdominated[n1] = true;
//
std::cout << "revorder: bb: prune node: dominance among children" << std::endl;
break;
} else if (this->dominates(*n1, *n2)) {
isdominated[n2] = true;
//
std::cout << "revorder: bb: prune node: dominance among children" << std::endl;
}
//
// scan all the bb nodes in the queue to delete the dominated ones if
// option is activated
if ((this->checkdominancealltree_) && (this->checkdominance_)) {
for (BBNode* n : childnodes) {
if (isdominated[n]) continue;
for (int deltacost = -this->maxdeltadominance_ ;
deltacost <= this->maxdeltadominance_; deltacost++) {
if (n->cost_ <= deltacost) continue;
if (!isdominated[n]) {
isdominated[n] =
checkdominancewithlist(n,
this->activenodes_[n->cost_ - deltacost]);
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
}
//
// delete the redundant nodes and add the others to the node queue
for (BBNode* n : childnodes) {
if (isdominated[n]) {
delete n;
} else {
// make sure to maintain the heap while pushing the new node in the queue
this->bbnodes_++;
n->setid(this->bbnodes_);
node.addtochildren(n);
n->postpropagation();
this->bbnodesqueue_.push_back(n);
this->activenodes_[n->cost_].push_back(n);
this->nbactivenodes_++;
if (this->exploredepth_) {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesnborderedcompare);
} else if (this->explorebest_) {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
} else if (this->exploredepthbeforebest_) {
if (!this->isfeasible_) {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesnborderedcompare);
} else {
std::push_heap(this->bbnodesqueue_.begin(),
this->bbnodesqueue_.end(), bbnodesbestcompare);
std::cout << "revorder: bb: " << this->bbnodesqueue_.size() << " nodes in the queue" << std::endl;
#endif
}
//
// check the dominance of input node with every node in the input vector
bool BBSolver::checkdominancewithlist(BBNode* n1,
std::vector<BBNode*>& nodelist) {
std::vector<BBNode*>::iterator itnode = nodelist.begin();
while (itnode < nodelist.end()) {
BBNode* n2 = (*itnode);
if (this->dominates(*n2, *n1)) {
//
std::cout << "revorder: bb: prune node: dominance of potential child ";
if (n2->istreated_) std::cout << " with treated node" << std::endl;
else std::cout << "with queue " << std::endl;
std::cout << "revorder: bb: depth: dominant = " << n2->depth() << ", dominated = " << n1->depth() << std::endl;
std::cout << "revorder: bb: costs: dominant = " << n2->cost_ << ", dominated = " << n1->cost_ << std::endl;
#endif
//
return true;
} else if (this->dominates(*n1, *n2)) {
//
std::cout << "revorder: bb: prune node: dominance of created node ";
if (n2->istreated_) std::cout << " already treated" << std::endl;
else std::cout << "still in queue" << std::endl;
std::cout << "revorder: bb: depth: dominant = " << n1->depth() << ", dominated = " << n2->depth() << std::endl;
std::cout << "revorder: bb: costs: dominant = " << n1->cost_ << ", dominated = " << n2->cost_ << std::endl;
#endif
//
erasenodefromall(*itnode);
} else {
itnode++;
}
//
// erase a node from every list where it appears
void BBSolver::erasenodefromall(BBNode* node) {
// first erase it from the list of children of its father
for (auto itn = node->getfather()->children_.begin();
itn < node->getfather()->children_.end(); itn++) {
if (*itn == node) {
node->getfather()->children_.erase(itn);
break;
}
// then erase its descendants if any
for (BBNode* child: node->children_) {
this->erasealldescendants(child);
}
// erase from active nodes
for (auto itn = activenodes_[node->cost_].begin();
itn < activenodes_[node->cost_].end(); itn++) {
if (*itn == node) {
activenodes_[node->cost_].erase(itn);
this->nbactivenodes_--;
break;
}
if (!node->istreated_) {
for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
if (*itn == node) {
bbnodesqueue_.erase(itn);
break;
}
// erase all the descendants of a node from all list of nodes and delete them
void BBSolver::erasealldescendants(BBNode* node) {
for (BBNode* child: node->children_) {
erasealldescendants(child);
}
for (auto itn = activenodes_[node->cost_].begin(); itn < activenodes_[node->cost_].end(); itn++) {
if (*itn == node) {
activenodes_[node->cost_].erase(itn);
this->nbactivenodes_--;
break;
}
if (!node->istreated_) {
for (auto itn = bbnodesqueue_.begin(); itn < bbnodesqueue_.end(); itn++) {
if (*itn == node) {
bbnodesqueue_.erase(itn);
break;
}
// compute a dual bound from the partial order described in the input node
double BBSolver::computedualbound(BBNode& node) {
//
// compute a simple bound by just looking at the ordered vertices
//
// first get the number of partially referenced vertices in the order
int nbpartials = node.nbordered() - node.nbfullref() - this->inst_->L();
//
// then aknowledge that vertices with less than U neighbors cannot be
// fully-referenced; but beware that we know that one potential child will
// be partially-referenced, so do not count it twice
int nbpotentialpartials = 1;
for (Vertex* v: this->inst_->vertices_) {
if (!node.isordered(v)) {
if (v->degree_ <= this->inst_->U() - 1) {
if (node.ispotentialchild_[v]) {
nbpartials++;
nbpotentialpartials = 0;
}
// finally for each edge linking two vertices with exactly U neigbors, one
// will be partially referenced; still need to beware with the potential
// children of the node
std::map<Vertex*,bool> inpartialedge;
for (Vertex* u: this->inst_->vertices_) inpartialedge[u] = false;
for (Vertex* u: this->inst_->vertices_) {
if (!node.isordered(u)
&& (!inpartialedge[u])
&& (u->degree_ == this->inst_->U())) {
for (Vertex* v: u->neighbors_) {
if (!node.isordered(v)
&& (!inpartialedge[v])
&& (v->degree_ == this->inst_->U())) {
nbpartials++;
inpartialedge[u] = true;
inpartialedge[v] = true;
if (node.ispotentialchild_[v]) nbpotentialpartials = 0;
break;
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
}
}
}
nbpartials += nbpotentialpartials;
int trivialbound = nbpartials;
//
// update current dual bound if improved
node.dualbound_ = std::max(node.dualbound_, trivialbound);
if ((!this->improvedualbound_) && (!this->userelaxbound_) ) {
return node.dualbound_;
}
/////////////////////////////////////////////////////////////////////////////
// Improve the trivial bound by considering several cuts
/////////////////////////////////////////////////////////////////////////////
if (this->improvedualbound_) {
for (Vertex* v : this->inst_->vertices_) {
if (node.isordered(v)) {
if (node.nbrefs(v) >= this->inst_->U()) {
this->ispartial_[v].setBounds(0, 0);
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
}
else if (node.mustbefullref_[v]) {
this->ispartial_[v].setBounds(0, 0);
}
else if (v->degree_ <= this->inst_->U() - 1) {
this->ispartial_[v].setBounds(1,1);
}
else {
this->ispartial_[v].setBounds(0, 1);
}
}
//
// at least one among the potential children will be partially referenced
IloExpr sumpartialinpotentials(this->envdual_);
for (Vertex* v : node.potentialchildren_) {
sumpartialinpotentials += this->ispartial_[v];
}
IloRange ctPartialsInPotentials(this->envdual_, -sumpartialinpotentials, -1);
this->modeldual_.add(ctPartialsInPotentials);
sumpartialinpotentials.end();
//
// solve the IP
this->cplexdual_.solve();
IloAlgorithm::Status statusimproved = this->cplexdual_.getStatus();
int improvedbound = this->inst_->nbvertices_;
if (statusimproved==IloAlgorithm::Infeasible) {
node.dualbound_ = this->inst_->nbvertices_;
std::cout << "revorder: bb: improved dual bound IP is infeasible: prune the node" << std::endl;
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
else {
improvedbound = ceil(this->cplexdual_.getObjValue()) - this->inst_->L();
if (improvedbound > node.dualbound_ ){
node.dualbound_ = improvedbound;
}
}
this->modeldual_.remove(ctPartialsInPotentials);
ctPartialsInPotentials.end();
#ifdef VERBOSE
std::cout << "revorder: node dual bound = " << improvedbound << " ; trivialbound = " << trivialbound << std::endl;
#endif
}
/////////////////////////////////////////////////////////////////////////////
// Compute a dual bound by solving the LP relaxation of a chosen model
/////////////////////////////////////////////////////////////////////////////
// Start searching for better bounds only if trivial bound is not too far from primal bound and a significant number of nodes have been treated to improve primal bound
if ( (this->userelaxbound_) && (this->treatednodes_ >= 1000) && (trivialbound * 2.0 >= this->primalbound_)) {
// fix all the variables related to the vertices that already in the current incomplete order
for (Vertex* v1 : this->inst_->vertices_) {
if (node.rank(v1) >= this->inst_->L() + 2) {
if (node.nbrefs(v1) >= this->inst_->U()) {
isfullref_[v1].setBounds(1, 1);
}
else if ((node.rank(v1) >= 1) && (node.rank(v1) <= this->inst_->L()+1)) {
isfullref_[v1].setBounds(1, 1);
}
else {
if (node.mustbefullref_[v1] == true) {
isfullref_[v1].setBounds(1,1);
}
for (Vertex* v2 : v1->neighbors_) {
if ((node.rank(v1) < 0) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(0, 1);
else if ( (node.rank(v1) < 0) && (node.rank(v2) >= 1)) isbefore_[v1][v2].setBounds(0, 0);
else if ((node.rank(v1) >= 1) && (node.rank(v2) < 0)) isbefore_[v1][v2].setBounds(1, 1);
else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) < node.rank(v2)) ) isbefore_[v1][v2].setBounds(1, 1);
else if ((node.rank(v1) >= 1) && (node.rank(v2) >= 1) && (node.rank(v1) > node.rank(v2)) ) isbefore_[v1][v2].setBounds(0, 0);
else {
cout << node.rank(v1) << "; " << node.rank(v2) << endl;
throwError("abnormal rank values");
}
}
}
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
IloExpr sumnotallfullref(this->env_);
int maxnbfullref;
for (Vertex* v : node.potentialchildren_) {
sumnotallfullref += isfullref_[v];
}
maxnbfullref = node.potentialchildren_.size() - 1;
IloRange cons(this->env_, sumnotallfullref, maxnbfullref);
relax_.add(cons);
cplexrelax_.setParam(IloCplex::SimDisplay, 0);
// cplexrelax_.setParam(IloCplex::Param::ParamDisplay, 0);
cplexrelax_.setParam(IloCplex::Threads, 1);
cplexrelax_.setParam(IloCplex::MIPDisplay, 0);
cplexrelax_.setParam(IloCplex::TuningDisplay, 0);
cplexrelax_.setOut(cplexrelax_.getEnv().getNullStream());
bool updateprimal_ = false;
if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
cplexrelax_.setParam(IloCplex::NodeLim, 9223372036800000000);
cplexrelax_.setParam(IloCplex::MIPSearch, 1);
if ((this->modeltype_ == CCG) || (this->modeltype_ == WITNESS)) {
cplexrelax_.use(CyclesLazyConstraintsBB(cplexrelax_.getEnv(), *(this->inst_), *this));
}
}
else {
cplexrelax_.setParam(IloCplex::NodeLim, 0);
}
cplexrelax_.solve();
IloAlgorithm::Status status = cplexrelax_.getStatus();
//
// if the relaxation is infeasible, the node can be pruned : set dual bound to negative value to state this
if (status != IloAlgorithm::Infeasible) {
int relaxbound = ceil(cplexrelax_.getBestObjValue());
//
std::cout << "revorder: bb: trivial dual bound = " << trivialbound << " ; relaxation bound = " << relaxbound;
std::cout << " (best primal bound = " << this->primalbound_ << ")" << std::endl;
#endif
if ( updateprimal_ && (node.nbordered() >= 0.7 * this->inst_->nbvertices_) ) {
if (relaxbound < this->primalbound_) {
this->primalbound_ = relaxbound;
std::cout << "best primal bound updated = " << this->primalbound_ << std::endl;
this->bestnbfullref_ = this->inst_->nbvertices_ - this->primalbound_;
float tolerance = 1e-06;
std::map<Vertex*, std::vector<Vertex*> > adjlist;
for (Vertex* v : this->inst_->vertices_) {
adjlist[v] = std::vector<Vertex*>();
}
for (Vertex* u : this->inst_->vertices_) {
for (Vertex* v : u->neighbors_) {
if (cplexrelax_.getValue(this->isbefore_[u][v]) >= 1 - tolerance) {
adjlist[u].push_back(v);
}
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
}
//
// search for the root of the digraph
Vertex* root = nullptr;
for (Vertex* v : this->inst_->vertices_) {
if (node.rank(v) == 1) {
root = v;
}
}
// Search for a topological order that will be valid only if the digraph is
// acyclic
std::vector<Vertex*> reverseorder;
std::map<Vertex*, int> rank;
this->topologicalorder(root, adjlist, reverseorder, rank);
// determine whether the digraph is cyclic or not
//
std::vector<std::pair<Vertex*, Vertex*> > reverseedges;
bool iscyclic = this->getreverseedges(adjlist, reverseorder, rank, reverseedges);
if (iscyclic) {
std::cout << "revorder: error: the final integer solution is cyclic" << std::endl;
throw;
}
for (Vertex* v : this->inst_->vertices_) {
this->bestrank_[v] = rank[v];
}
}
}
//
// update current dual bound if improved
if (relaxbound > node.dualbound_) {
node.dualbound_ = relaxbound;
//
std::cout << "revorder: bb: new dual bound = " << relaxbound << std::endl;
std::cout << "revorder: bb: number of ordered vertices = " << node.nbordered() << std::endl;
#endif
//
}
}
else{
node.dualbound_ = this->inst_->nbvertices_;
std::cout << "revorder: bb: dual bound relaxation is infeasible: prune the node" << std::endl;
relax_.remove(cons);
cons.end();
}
return node.dualbound_;
// initialize the IP model for improved dual bound
void BBSolver::initializedualboundIP() {
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
this->modeldual_ = IloModel(this->envdual_);
this->cplexdual_ = IloCplex(this->modeldual_);
IloExpr obj(this->envdual_);
char name[256];
for (Vertex* v : this->inst_->vertices_) {
this->ispartial_[v] = IloBoolVar(this->envdual_);
sprintf(name, "ispartial%i", v->id_);
this->ispartial_[v].setName(name);
obj += this->ispartial_[v];
}
this->modeldual_.add(IloMinimize(this->envdual_, obj));
obj.end();
//
// if we could identify cliques that contain at least one partially-referenced vertex, add a constraint to enforce this; the two-cliques need not be checked
for (Clique* c : this->cliqueswithpartialref_) {
IloExpr sumpartialsinclique(this->envdual_);
for (Vertex* v : c->vertices_) sumpartialsinclique += this->ispartial_[v];
this->modeldual_.add(sumpartialsinclique >= this->nbpartialinclique_[c]);
sumpartialsinclique.end();
}
//
// if we could identify cycles composed of low degree vertices add a cut specifying that the vertices included in such cycles must include at least as many partially referenced vertices as there are cycles
IloRangeArray ctaryLowDegreeCycles(this->envdual_);
int nbcons = 0;
for (int i = 0; i < this->lowdegreecycles_.size(); i++) {
std::vector<Vertex*> cycle = this->lowdegreecycles_[i];
IloExpr sumpartialsincycle(this->envdual_);
for (Vertex* v : cycle) {
sumpartialsincycle += this->ispartial_[v];
ctaryLowDegreeCycles.add(sumpartialsincycle >= this->nbpartialsincycle_[i]);
sprintf(name, "ctaryLowDegreeCycles_%i", nbcons);
ctaryLowDegreeCycles[nbcons++].setName(name);
sumpartialsincycle.end();
}
this->modeldual_.add(ctaryLowDegreeCycles);
ctaryLowDegreeCycles.end();
//
// load the integer problem and set display parameters
this->cplexdual_.setParam(IloCplex::MIPDisplay, 0);
this->cplexdual_.setParam(IloCplex::SimDisplay, 0);
this->cplexdual_.setParam(IloCplex::TiLim, 10);
this->cplexdual_.setParam(IloCplex::Threads, 1);
// this->cplexdual_.setParam(IloCplex::Param::ParamDisplay, 0);
}