Newer
Older
#!/usr/bin/python
from keras.models import Sequential
from keras.layers import Dense
import numpy
seed = 7
numpy.random.seed(seed)
# Split into input (X) and output (Y) variables
model = Sequential()
model.add(Dense(12, input_dim=5, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(2, init='uniform', activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))