#!/usr/bin/python from keras.models import Sequential from keras.layers import Dense import numpy # Fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # Loading data dataset = numpy.loadtxt("save.csv", delimiter=";") # Split into input (X) and output (Y) variables X = dataset[:,0:5] Y = dataset[:,5:] # Creating the model model = Sequential() model.add(Dense(12, input_dim=5, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(2, init='uniform', activation='softmax')) # Compiling the model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Training the model model.fit(X, Y, nb_epoch=150, batch_size=10) # Evaluating the model scores = model.evaluate(X, Y) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))