Skip to content
Snippets Groups Projects
Commit 7ebe99ae authored by Sacha Percot-Tétu's avatar Sacha Percot-Tétu
Browse files

Added the missing FFT algorithm files

parent 6c8ee971
No related branches found
No related tags found
No related merge requests found
/*
* Copyright 2011-2012 INSA Rennes
*
* This file is part of EIImage.
*
* EIImage is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* EIImage is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with EIImage. If not, see <http://www.gnu.org/licenses/>.
*/
#include "FFT.h"
using namespace std;
typedef struct
{
double real;
double imag;
}
COMPLEX; // complex
// FFT & 2DFFT code written by Paul Bourke July 1998
/*----------------------------------------------------------------------
---
Calculate the closest but lower power of two of a number
twopm = 2**m <= n
Return TRUE if 2**m == n
*/
bool Powerof2( int n, int *m, int *twopm ) {
if ( n <= 1 )
{
*m = 0;
*twopm = 1;
return false;
}
*m = 1;
*twopm = 2;
do
{
(*m)++;
(*twopm) *= 2;
} while ( 2 * (*twopm) <= n );
if ( *twopm != n )
{
return false;
}
else
{
return true;
}
}
int nearestUpPower2(int n) {
int i;
for(i = 1; i < n; i *= 2);
return i;
}
/*-------------------------------------------------------------------------
Perform a 2D FFT inplace given a complex 2D array
The direction dir, 1 for forward, -1 for reverse
The size of the array (nx,ny)
Return false if there are memory problems or
the dimensions are not powers of 2
*/
bool FFT2D(complex<double> **c,int nx,int ny,int dir)
{
int m,twopm;
double *real, *imag;
/* Transform the rows */
real = new double[nx];
imag = new double[nx];
if (real == NULL || imag == NULL)
return false;
if (!Powerof2(nx,&m,&twopm) || twopm != nx)
return false;
for (int j=0;j<ny;j++) {
for (int i=0;i<nx;i++) {
real[i] = c[i][j].real();
imag[i] = c[i][j].imag();
}
FFT(dir,m,real,imag);
for (int i=0;i<nx;i++) {
c[i][j] = complex<double>(real[i], imag[i]);
}
}
delete[] real;
delete[] imag;
/* Transform the columns */
real = new double[ny];
imag = new double[ny];
if (real == NULL || imag == NULL)
return false;
if (!Powerof2(ny,&m,&twopm) || twopm != ny)
return false;
for (int i=0;i<nx;i++) {
for (int j=0;j<ny;j++) {
real[j] = c[i][j].real();
imag[j] = c[i][j].imag();
}
FFT(dir,m,real,imag);
for (int j=0;j<ny;j++) {
c[i][j] = complex<double>(real[j], imag[j]);
}
}
delete[] real;
delete[] imag;
return true;
}
/*-------------------------------------------------------------------------
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays of 2^m points.
dir = 1 gives forward transform
dir = -1 gives reverse transform
Formula: forward
N-1
---
1 \ - j k 2 pi n / N
X(n) = --- > x(k) e = forward transform
N / n=0..N-1
---
k=0
Formula: reverse
N-1
---
\ j k 2 pi n / N
X(n) = > x(k) e = forward transform
/ n=0..N-1
---
k=0
*/
void FFT(int dir,int m,double *x,double *y)
{
long nn,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
/* Calculate the number of points */
nn = 1;
for (i=0;i<m;i++)
nn *= 2;
/* Do the bit reversal */
i2 = nn >> 1;
j = 0;
for (i=0;i<nn-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<nn;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<nn;i++) {
x[i] /= (double)nn;
y[i] /= (double)nn;
}
}
return;
}
/*
* Copyright 2011-2012 INSA Rennes
*
* This file is part of EIImage.
*
* EIImage is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* EIImage is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with EIImage. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FFT_H
#define FFT_H
#include <complex>
int nearestUpPower2(int n);
bool Powerof2( int n, int *m, int *twopm );
void FFT(int dir,int m,double *x,double *y);
bool FFT2D(std::complex<double> **c,int nx,int ny,int dir);
#endif // FFT_H
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment