Skip to content
Snippets Groups Projects
plot_registers.py 7.19 KiB
Newer Older
#!/usr/bin/python3.5
# This Python file uses the following encoding: utf-8
#Télécharger matplotlib, PIL, et numpy
import re
import string
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import math
import PIL
from PIL import Image
import sys

if (len(sys.argv)!=2) :
	print("Mettez en paramètre le fichier de statistique")
	quit()

integrity = re.compile("instr_agent_(\w*)_\d+_\d+\.txt")
check = integrity.search(sys.argv[1])
print(sys.argv[1])

if check == None :
	print("Mauvais paramètre "+sys.argv[1])
	quit()


fichier_instruction = open(sys.argv[1])
lines = fichier_instruction.readlines()

rom = check.group(1)
print(rom)

#Les regexps pour capturer les registres et les index des registres
R = re.compile("R\[(\d+)\]")
M = re.compile("M\[(\d+)\]")
I = re.compile("I\[(\d+)\]")
O = re.compile("O\[(\d+)\]")




#Pour des pourcentages pour les figures
output_total = 0
memory_total = 0
register_total = 0
operation_total = 0

#Les dictionnaires pour stocker les index des registres et leur nombre d'occurences dans le programme
registerR = {}
registerM = {}
inputI = {}
registerO = {}
#Le dictionnaire des opérations
operations = {"nop":0," + ":0," - ":0,"max":0,"min":0,"-(":0,"*":0,"/":0,"log":0,"exp":0,"cos":0,"sin":0,"popcount":0,"if":0,"goto":0}
#print(operations)

#Boucle de capture
for line in lines :
    line.lstrip()
    line.rstrip('\n')
    
    operation_total+=1
    
    #Détecte les cases registres utilisées
    catchR = R.findall(line)
    if catchR != [] :
        #print(catchR)
        for num in catchR :
            if num in registerR :
                registerR[num] = registerR[num]+1
            else :
                registerR[num] = 1
            register_total+=1
    
    #Détecte les cases mémoire utilisées
    catchM = M.findall(line)
    if catchM != [] :
        #print(catchM)
        for num in catchM :
            if num in registerM :
                registerM[num] = registerM[num]+1
            else :
                registerM[num] = 1
            memory_total+=1
    
    #Détecte les cases input utilisées
    catchI = I.findall(line)
    if catchI != [] :
        #print(catchI)
        for num in catchI :
            if num in inputI :
                inputI[num] = inputI[num]+1
            else :
                inputI[num] = 1 
            
    #Détecte les cases output utilisées
    catchO = O.findall(line)
    if catchO != [] :
        #print(catchO)
        for num in catchO :
            if num in registerO :
                registerO[num] = registerO[num]+1
            else :
                registerO[num] = 1
            output_total+=1
    #Détecte les opérations appliquées
    for op in operations:
        if op in line:
            operations[op]= operations[op]+1

#Nécessaire pour différencier les if, if_goto et +          
operations['if']-=operations['goto']
operations[' + ']-=operations['goto']

#print(registerO)
#print(registerO.keys())
#print(registerO.values())

#Traitement pour rendre les outputs plus clair
trueO = list(registerO.keys())
i=0
while i < len(trueO) :
    if trueO[i] == '0' :
        trueO[i] = 'nope'
    elif trueO[i] == '1' :
        trueO[i] = 'fire'
    elif trueO[i] == '2' :
        trueO[i] = 'up'
    elif trueO[i] == '3' :
        trueO[i] = 'right'
    elif trueO[i] == '4' :
        trueO[i] = 'left'
    elif trueO[i] == '5' :
        trueO[i] = 'down'
    elif trueO[i] == '6' :
        trueO[i] = 'upright'
    elif trueO[i] == '7' :
        trueO[i] = 'upleft'
    elif trueO[i] == '8' :
        trueO[i] = 'downright'
    elif trueO[i] == '9' :
        trueO[i] = 'downleft'
    elif trueO[i] == '10' :
        trueO[i] = 'upfire'
    elif trueO[i] == '11' :
        trueO[i] = 'rightfire'
    elif trueO[i] == '12' :
        trueO[i] = 'leftfire'
    elif trueO[i] == '13' :
        trueO[i] = 'downfire'
    elif trueO[i] == '14' :
        trueO[i] = 'uprightfire'
    elif trueO[i] == '15' :
        trueO[i] = 'upleftfire'
    elif trueO[i] == '16' :
        trueO[i] = 'downrightfire'
    elif trueO[i] == '17' :
        trueO[i] = 'downleftfire'
    i+=1

print(trueO)

#Traitement pour avoir des pourcentages
trueO_values = list(registerO.values())
for i in range(len(trueO_values)) :
    trueO_values[i]=(trueO_values[i]/output_total)*100

R_values = list(registerR.values())
for i in range(len(R_values)):
    R_values[i] = (R_values[i]/register_total)*100

M_values = list(registerM.values())
for i in range(len(M_values)) :
    M_values[i] = (M_values[i]/memory_total)*100

op_values = list(operations.values())
for i in range(len(op_values)) :
    op_values[i] = (op_values[i]/operation_total)*100

figO,axO = plt.subplots(2,1,figsize=(21, 27)) #figsize à ajuster pour modifier la taille des graphiques
plt.subplots_adjust(wspace=0.5,hspace=0.8)
axO[0].bar(trueO,trueO_values)
axO[0].set(xlabel = "Used Output Registers", ylabel = "Number of use (%)", title = "General Use of the Output Registers")

axO[1].barh(list(operations.keys()),op_values)
axO[1].set(xlabel = "Number of use (%)", ylabel = "Used Operations", title = "General Use of the Operations")

plt.show()

figR,axR = plt.subplots(2,1,figsize=(21,27))
plt.subplots_adjust(wspace=0.5,hspace=0.8)
axR[0].bar(list(registerR.keys()),R_values)
axR[0].set(xlabel = "Used Registers", ylabel = "Number of use (%)", title = "General Use of the short-term Registers")

axR[1].bar(list(registerM.keys()),M_values)
axR[1].set(xlabel = "Used Registers", ylabel = "Number of use (%)", title = "General Use of the long-term Registers")

plt.show()

#Traitement des images
#Création de la matrice 210x160
matrice_image = [[0 for x in range(160)] for y in range(210)]
max_input = max(inputI.values())
#print(max_input)

#On remplit la matrice
for inp,use in inputI.items() :
    #print(inp)
    aux1 = int(int(inp)/32)
    h = aux1*5
    #print(aux1)
    aux2 = int(inp) - aux1*32
    w = aux2*5
    #print(aux2)
    for i in np.arange(h,h+5,1.0) :
        for j in np.arange(w,w+5,1.0) :
            matrice_image[int(i)][int(j)]= (use/max_input) 
#print(matrice_image)

#import resizeimage

image = Image.open("captures/"+rom+".png")
result1 = Image.new(image.mode,image.size)
result2 = Image.new(image.mode,image.size)

#On noircit les pixels non considérés par l'algorithme
for i in range(160) :
    for j in range(210) :
        if matrice_image[j][i] == 0 :
            p=(0,0,0,255)
            result1.putpixel((j,i),p)
        else :
            pixel=image.getpixel((j,i))
            p = (255-pixel[0],255-pixel[1],255-pixel[2],255)
            result1.putpixel((j,i),p)
result1 = result1.resize((420,320),Image.ANTIALIAS)
result1.show()
result1.save(fichier_instruction.name+"_scope.png")

#On met en rouge les pixels non vus et on pondère les valeurs RGB selon le maximum de l'utilisation d'un input
for i in range(160) :
    for j in range(210) :
        if matrice_image[j][i] == 0 :
            p=(255,0,0,255)
            result2.putpixel((j,i),p)
        else :
            pixel=image.getpixel((j,i))
            percent = matrice_image[j][i]
            p = (int((255-pixel[0])*percent),int((255-pixel[1])*percent),int((255-pixel[2])*percent))
            result2.putpixel((j,i),p)

result2 = result2.resize((420,320),Image.ANTIALIAS)
result2.show()
result2.save(fichier_instruction.name+"_scope_ponderation.png")