Skip to content
Snippets Groups Projects
programme.maj 502 B
Newer Older
// Program 3: Train a model with customized hyperparameters and evaluate it
Malvin Chevallier's avatar
Malvin Chevallier committed
newModel model3
configure {
Malvin Chevallier's avatar
Malvin Chevallier committed
    Dataset dataset2 = loadData("test.csv")
    dataset2.shuffle()
    dataset2.split(0.6)
Malvin Chevallier's avatar
Malvin Chevallier committed
    dataset2.generateDataLoader()
    model3.setHyperparameter(epochs=15, lr=0.01, batchSize=32)
    model3.compile(linear(4, 128), applySigmoid(0.6), linear(128, 3), applySoftmax(0.3))
Malvin Chevallier's avatar
Malvin Chevallier committed
    model3.SGDoptimize(0.001)
    model3.setLoss(crossEntropy)
    model3.train(dataset2)
    model3.evaluate(dataset2)