INSTITUT NATIONAL

‘ DES SCIENCES
APPLIQUEES
RENNES

End-of-Study project
presented by

Yu Liu

gineer student of INSA Rennes
Department ElI
Scholar year 2019-2020

ement and optimization of software <ImagelNSA>

Location of the End-of-Study project
INSA Rennes (telecommuting)

Tutor of the End-of-Study project
Luce Morin and Julien Heulot
Pedagogical correspondent INSA

Luce Morin

PFE presented on 20/10/2020

B

Contents

ACKNOWIBAGEMENT ..ottt bbb bbb 3
INEFOTUCTION ...ttt 4
HIStOrY OF IMAJEINSAL........ooeeese ettt 5
VWY Qoo 8
StrUCLUrE OF IMAGEINSAL ... 10
CIMIBKE ..ottt 16
Modifications implemented in the PrOJECE...........cceieerreieereees e 17
CONCIUSION. ... oottt 36
AANINEX .o eeeeeree e 37
AADSETACE. ...ttt R8RSR 43

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7)
Tél. +33(0) 223238200 - Fax +33 (0] 22323 8

www.insa-rennes.fr

Acknowledgement

First, I would like to thank my tutors, Mrs. Luce Morin and Mr. Julien Heulot. They selflessly
spend a huge amount of time and energy to have meeting with me every week and put forward
valuable suggestions and advices. The progress of my project is closely related to their

guidance and availability, | want to express my sincerest thanks to them.

I would like to thank Mrs. Muriel Pressigout, responsible in charge of internships for fifth grade
students. Under her advice and approval, | could obtain the opportunity to complete the project

in such a difficult period severely affected by the epidemic.

Finally, I would like to thank the entire Ell department for educating me, through solid
theoretical study and substantial practical experience acquired from school, | was able to carry

out this project.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7 _
Tél. +33(0) 22323 82 00 - Fax +33 (0] 22323 8

www.insa-rennes.fr

Introduction

As an important learning approach, image processing has always been one of the focus of Ell
department. To show students more intuitively the methods and operations encountered in
theoretical study, Ell has developed itself an image processing software called ImageINSA.

Concepted towards a convenient and efficient tool, the software carries the entire content of
the practical courses. To meet the educational requirements, it has been continuous improved

in recent years.

However, there are still some problems and shortcomings found by users during practical
courses. In such case, this project has been proposed to fix some already known bugs which
may lead to crash, to settle several lack of functionalities and to correct some inappropriate
contents of the user interface, moreover, an automatic test set for the software is waiting to be
completed, in order to strengthen the robustness of the program and facilitate subsequent
development.

This report will not only describe the work which has been completed during the project but
will also analyze the structure of the software and explain how functional components are
designed, how they are connected through the services and operations modules. And from the
perspective of the whole project, how classes defined in different location communicate to each

other through the Qt’s signal and slot mechanism.

This report starts from the history of the software, then explains the reasons for choosing Qt as
development platform, next, it analyzes the structure of the software as well as the role of each
component, the importance of CMake in project construction will also be introduced. The
explication of the improvements to the software is given through a few examples, and the
construction process of the test framework will be introduced at the end.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33 (0] 2 23 23 82 00 - Fax +3:
www.insa-rennes.fr

History of ImageINSA

2003: IMAGE ElI

Developed internally by EIl department in 2003 as an image processing software, it was
initially called Image EIl. This first version is strongly based on the Microsoft Visual C++ 6
environment and its MFC 6.0 library. It was therefore impossible to deploy it on systems other
than Microsoft Windows. In addition, this technology was established in 1998, its utility was
insufficient comparing to the Visual C++ .NET framework released in 2002. The software
became soon very difficult to maintain according to its original design. Therefore, the needs to

bring this project to more recent technologies become essential.

2009: IMAGE ElI

The first attempt to implement the software to C ++ & Qt technologies dates to 2009. A group
of Ell students took this charge during their 5th year’s project. The mission was complicated,
because the graphical interface is based on MFC technology and the entire source code of
Image Ell is based on VC6, which unfortunately had no support for the ANSI C99 standard.

This project gave birth to an unfinished software, equipped with a part of the functionalities
defined in original software but most of the processing algorithms had not been implemented.

2011: IMAGE ElI

The second attempt started in 2011, within an end-of-study internship of a 5EII student. He

took the response for completing the porting of Image EIl which started two years ago.

The architecture of project was relatively improved, many missing contents had been added
and most of the errors were corrected, it became much more robust. The result given was a
functional software, but some functions and algorithms were taken away comparing with the

original software.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33 (0) 2 23 23 82 00 - Fax +3 91
www.insa-rennes.fr

2012-2013: detig-t

A 4th year INFO project called detig-t was realized by a group of 6 students. The main
achievement of this project includes two complete libraries, Imageln and Genericlnterface. The
first provides services related to image modeling and processing, the second offers graphical
interface related tools. Their structures are presented in detail in the following section. The
software was coded in C++ and the graphical interface was constructed under Qt.

2012-2013: EIIMAGE

The eiimage project was proposed as a summer internship aiming to reconstruct IMAGE ElI
based on the detig-t project. Many functions had been added to GenericInterface, a dynamic
library named core was created and the add plugin function was re-implemented. The

architecture ensured no dependency between the extension module and the final application.

EIIMAGE has been used for practical work in EIl department since early 2013. Unfortunately,

the source file was lost, only the executable file left for this version.

2014-2015: ImageINSA

This project was carried out by a research engineer at INSA. The lost source of EIIMAGE was
restored according to the executable version using in practical courses. Several bugs were fixed,

and the compilation was since then managed by CMake.

The software changed its name to ImagelNSA and the project repository was created under

GitHub repository to enable the access for users outside of INSA.

2016-2017: ImagelNSA

A summer internship was realized by a 4EIll student, the content of this internship included
error corrections and interface improvements, several new features had been added to the

software.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 2 23 23 82 00 - Fax +33
www.insa-rennes.fr

2018-2019: ImagelNSA

A 3EII and a 3INFO student worked together in summer internship to maintain the software.
One worked in the algorithm filed, optimized the existing operations and proposed new features.

The other concentrated on the user interface improvements, the test class of interface was

created by him and many remaining bugs were solved.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7 ,
Tél. +33(0) 223238200 - Fax +33 (0] 223238

www.insa-rennes.fr

Why Qt

In this section we discuss the advantages of Qt and the reasons it was chosen as the
development platform for this project.

As a cross-platform application development framework extendedly developed on C++, Qt
possesses a large number of available tools for graphical interface development. Its
advantages can be summarized in the following six points :

1. Cross-platform

Qt can not only run on Windows, but also on various platforms such as Linux and Mac OS,
which means that programs written with Qt are able to migrate to multiple platforms with
affordable modifications.

Writing software for multiple platforms is trivial and errors may occur at any time. This is
especially true for maintaining build files, through the gmake tool, Qt is able to face this
challenge well. Qmake can generate accurate and error-free compilation files for the target
platform. (Although gmake is good enough, CMake is still chosen to build the project, the
reason will be revealed later)

2. Open Source

Qt provides a dual software licensing model, under this model it can be used to develop
proprietary software under commercial licenses as well as the open source software under
general public licenses.

3. Rich Libraries

In addition to providing interface libraries, it also provides audio libraries, web engines, 3D
libraries, database SDKs and so on, which allows us to easily make cross-platform programs.
Although most of the libraries are not used in this project, it still provides a variety of
attractive possibilities.

4. Expansibility

Qt itself can be called as an extension of C++ since its classes are written in C++, which
means it inherits many advantages of C++, such as fast and object-oriented. It is easy to
extend and allows real component programming.

In addition, it uses special code generation extensions such as moc (meta object compiler)
and uic (user interface complier). Before compiled by the standard gcc compiler, the C++

source file must be analyzed with moc. If the macro Q_OBJECT was found, a new source file

that contains the implementation of corresponding macro methods will be generated, the new

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex

Tél. +33(0) 223238200 - Fax +
www.insa-rennes.fr

file will have a “moc_" in front of the original name and will also enter the compilation
system before being linked into the binary code.

5. Robust architecture

In a Qt project, the interface source code is separate from the program source code, which
means the program logic is isolate from the creation and setting of interface control objects.
Qt's strategy is to generate the corresponding source code as if there is no interface to
implement.

Qt runtime does not need to rely on virtual machine like Java, without simulation layers or
large-capacity runtime environments, it can directly write low-level graphics functions at a
satisfactory speed.

6. Qt Signals & Slots mechanism
This feature is listed separately as an advantage because its practicality and efficiency.

For the convenience of event processing, Qt provides flexible signal and slot mechanism,
which can reduce coupling and improve code reusability. When an event occurs, for example,
a button has been clicked, it will send out a signal. This kind of transmission is purposeless
like broadcasting. If an object is interested in this signal, it will call the connect function,
which means that it binds the signal to be handled with a slot function which gives a reaction
after receiving the signal. In other words, when the signal is sent, the connected slot function
will automatically be called back.

A slot is actually a member function of class, and it can take any type of parameters just like
a normal C++ function. It can even be a virtual function and be overloaded. The only
difference is that a slot can be connected to a signal and it is called whenever a signal bound
to the slot is emitted.

There are some rules that | summarized to be aware of when deploying this mechanism:

(1) A signal can be connected to multiple slots but the calling order is uncertain, additionally
multiple signals can be connected to one slot. Both the sender and the receiver need to be
subclasses of QObject.

(2) The signal is a function declaration without function code, it can be connected to another
signal.

(3) Slot functions are member functions of a class which means they will be affected by
public, private, and protected assignment.

(4) Qt automatically cancels all slots connected to the object when it is deleted.

(5) Lambda expression can be used as a slot function.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex
Tél. +33(0) 2 23 23 82 00 - Fax

www.insa-rennes.fr

Structure of ImageINSA

Algorithms =)

Operations (1)
—— app < Widgets &
Services (1)
i+ Genericinterface m
© detigt & lb ——
Imageln
— Input
3 OpSet
£ Ent
i Entropy ImagelNSA |o— —
= Median Parameter
0 Segmentation [+ pluging ——— BuiltinOpSet
) SegmentationTest - ;
core = Plugin
plugin
—_— ImgParam
IntParam
Operation
PlugOperation

Figure 1 : The structure of ImagelNSA

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7 1
Tél. +33(0) 223238200 - Fax +33 (0] 2 23 23 83

www.insa-rennes.fr

Average

Imageln

T

© Imageln

E

E

@

i

T

©

@
o

sl =l =] g ol o
S| gl ele
®

=

ion
n
m
e
ge

=}
o

=%
©

[G]

Lo v

=

JE =

£| =

| @ @ =1

Ctol

Im:

——————————

the
ithm

© Algorithm

GenericAlg
SpecificAlgorit!
Bm
ImageFileFa

Gr:

Difference

Filter

Algorithm Coll
ProjectionHist
BadlmageExce

w @
©

| =
2| o

T

=
E=

@

a
@

UnknownFormatE:

T

abeli

)

call
i
EdgeColorati

Component!

Figure 2 : Contents of Imageln library
Imageln library provides a set of basic operations for manipulating raster images and applying
algorithms to them. The basic concept of image class includes a three-dimensional matrix:
width, height and number of channels, all raster images can therefore be represented by this
class (Grayscalelmage and RgbImage inherits the Image class, but HSVImage inherits directly
the Qcolor provided by Qt).

Imageln allows to apply algorithms to images. The algorithms are defined in the form of functor
objects, they may take parameters in the constructor function and can be applied via the
function operator(), a pointer to the newly allocated result image will then return. If the image
passed in parameters differ from the correct type, an exception will be thrown. To ensure the
operation take images in a correct format, images can be converted to the desired type via

Converter class.

Imageln requires external libraries (libjpeg and libpng) to support image processing within
JPEG and PNG format (BMP image can work independently without external library) and it
overrides some methods in these libraries to redefine the error manager structure and its
handler. When working with these libraries, program exits directly when a fatal error occurs,

but it is better to raise an exception instead.

The Imageln library is also very genericity oriented, the concept includes an extensive use of
templates and inheritance. Most of the classes in the library have one or more template
parameters, so data structures, images classes and algorithms can therefore be reused for
other types beyond the original design. It also provides many typedefs to ignore the template

parameters and use classes directly without suffix.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 2 23 23 82 00 - Fax +33
www.insa-rennes.fr

EasyBMP _DataSt
EasyBMP VariousBMPutilities

Vfflmage

ColumnProfile

]"

To illustrate its extensivity, here are two examples of creating new image format and new
algorithm:

ImageFile class is an interface to open image files in different formats. To add a new image
format, the class inherits ImageFile including the specification of the new format needs to be
created, a new class inherits ImageFileFactory is also necessary to enable the instantiation of
the newly created ImageFile. And finally, the setFactory function will enable the use of this
new factory. With this kind of settings, the new image format becomes acceptable to the

software.

As the main and most useful algorithm interface, Algorithm_t template is developed to enable
the implementation of an algorithm by redefining only the method corresponding to the
algorithm. The various overloads of the application operator are already equipped, only the
return type needs to be changed in order to adapt to the type designated by template
parameter. If the new algorithm needs other parameters besides the input images, the

constructor should be overloaded to remember these parameters.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7)
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 2

www.insa-rennes.fr

Genericlnterface

\ [| \ |
Servicebxceptions | | InterfaceExceptions ‘ Services | Utilities Exceptions ‘ ‘ images Genericinterface |

®)

| | | | |
‘ ImageWidgets | NavBar ‘ ‘ AboutDialog ImagelistBox | | AlgorithmService ‘ ‘ FileService UtilityService | | Node ‘ ‘ WindowService | Log

Figure 3 : Contents of GenericInterface library

Genericinterface serves as the basis for all types of operations that need to be implemented. Its
main role is to design a framework of interface that unify the way to implement operations and

restrict them towards a common behavior.

The structure of the genericinterface inherits QMainWindow as the main entrance of the
program, all functional modules of the program are initially launched through the tool bar that

it provides.

A pure virtual class Service is defined to connect services to its owner (genericinterface). The
two most used services are windowService and fileService. For example, windowService
manages all window-related activities, through this service, it is possible to identify different
windows according to their ids, all feasible operations can be done with this unique id, such as
changing window title or updating the display image. Apart from the QMainWindow, the
genericinterface inherits also QMdiArea, which draws the windows that it manages and

arranges them in a cascading or tile pattern.

The navigation bar, on the left, is the central element that governs the policy of automatically
minimize or maximize windows. When an image is opened, it will be added to the navigation
bar. When a new window popped up after a certain operation, it is linked automatically to its
original window. After a click on a thumbnail in the navigation bar, all the linked windows are
brought to the foreground, the others are minimized, it is even possible to make a multiple

selection by keeping the control key pressed.

Figure 4 : The arrangement of the
mentioned components

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7 :
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 2 2

www.insa-rennes.fr

Core

core
ﬁ)

| Input | ‘ OpSet | | Parameter | | BuiltinOpSet | | Plugin | | ImgParam | | IntParam | | Operation | | PlugOperation |

Figure 5 : Contents of Core library

As described by its name, the core part of the program is defined here, it is called
GenericOperation. Each GenericOperation run an image-processing algorithm, it may take
images and other parameters as input and return some images, text, or other widgets as

output, this can be customized according to different needs.

Operator is a pure virtual function defined in GenericOperation, used as the entry point of
every operation, all applications containing the implementation of an operation need to

override this function.

An OpSet is a set of GenericOperation objects, represent the instances of different

implementations of the GenericOperation.

The upper class of an OpSet is called BuiltinOpSet, it is an implementation of OpSet and it is

used inside the main application to organize the built-in operations.

BuiltinOpSet* tools = new BuiltinOpSet(gApp->translate("", "&Tools").toStdString());
tools->addOperation(new RandomImg0p()); Imagesn
tools->addOperation(new ColorimetryOp());

tools->addOperation{new RejectionRingop());

Hl olors Image Morpho. math. Filtering Analysis Coding Toals Plugin Window Help
EUrmERC

tools->addOperation(new SinusSynthesisOp());
tools->addOperation(new SeparatorOp());
tools->addOperation(new SignalToNoiseOp());
tools->addOperation(new MeanSquaredErrorOp());
tools->addOperation(new SeparatorOp());
tools->addOperation(new EntropyOp());
tools->addOperation{new DoubleEntropy0p());

an,
Entropy calculation (double image}

Figure 6 : How operations are added to the user interface

In summary, the whole set of Core defines the drop-down menu of the software. As a
standard entry point for all kinds of available operations, it contains all the components

related to the organization of its menu.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 22323 82 00 - Fax +33 (0] 2 23

www.insa-rennes.fr

App
l]

1
| l I
| Algorithms | | Operations | V\“d_i_—!ﬂs S‘EWFES img
== ES @ @ @

Figure 7 : Contents of App library

App is an extension of the core part, it contains all the implementation details of algorithms
and operations, comply with the framework which has been defined in Core to present the
available content to the user. The most used structure to implement an operation is writing in
three separated parts.

To illustrate how an operation is implemented, we take DCT operation as an example:

The DCTDialog.ui describes the graphical interface, which shows the available options to user

and receives the requirements entered by the user.

The DCTOp.cpp is then used to define the behavior of each element showed in the graphical
interface, the operation to perform depends on the options obtained in the ui class, the useful
input information will be extracted and saved as variables. It is also responsible for managing
the output.

The correspond arithmetic part is registered in Algorithm folder, DCT.cpp will be called by Op
class to do the real calculation, the result is then returned to Op and finally, the encapsulated
result will be displayed to the user.

SinusSynthess DCT SpiltColor _InversePyramid SpitHsy DMM MeanSquaredBriror Threshold DPCM Median Transforms DPCMEncoding Noke Translate DoubleEntry Point Entry UCharConvert PseudoColor ZeroCrossing FFT Pyramid

I I I \ I \ I

I

BFlit Center Flip Hadamard Histogram ClassAnalysis Quantification ClassResult Hough Color Randomimg Colorimetry RejectionRing Huffman CombineColor Rotate IFFT CombineHsv Scaling Croissance Separator InverseHough SignalToNake

Figure 8 : List of operations defined in App library

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7 :
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 2 2

www.insa-rennes.fr

CMake

At the beginning of this project, a lot of time was spent to compile the source file of the program.
I got many failures because multiple external libraries that the program depends on needed to
be compiled at first, since my working environment is on windows, several versions of Qwt
library fail to compile, even if it succeeds, the path cannot be automatically identified. I still

need to manually add its path to the environment variable.

After the prompt message kept warning me that the relevant FindQwt.cmake cannot be found,
I began to study the structure of the project carefully, look for the connector that binds different
parts together. Until | recognized CMake as a powerful tool and learned its usage, | could

successfully compile the project.

CMake is a cross-platform build tool that describes the compilation process of all platforms
with simple commands. As we learned how to write makefile from school, makefile describes
the compilation rules of the entire project. The series of rules it defines specify the compile
order of files.

CMake will generate corresponding Makefiles suit for the current IDE. One strict reason that
we do not use directly makefile is that our project is strongly based on Qt. Since it has an
extended part of C++, it employs a special meta-object compiler and a user interface complier.
The program code including Qt sources needs to be preprocessed before compiling, according

to this feature, ordinary makefile are not applicable.

The gmake tool is manufactured by Qt Company to generate special makefile files for Qt.
Similarly, gmake is also a cross-platform tool and could be used in non-Qt projects and
independent of IDE. But CMake also supports Qt applications and the use of CMake is wider
than gmake, so project chooses CMake instead of gmake. There might be another historical
reason, CMake was released in 2000 and gmake in 2003. When the project started its migration
from MFC 6.0 to Qt, the technology of CMake was more reliable.

The use of CMake greatly simplifies the workload, especially for large-scale project. With the
help of CMake, it’s possible to determine automatically the location of libraries and the library
dependencies handling, executable files generation and static libraries creation can be
programmed with one line of code, which greatly simplifies the project building process.

INSA Rennes
20 Avenue des Buttes de Coésm

CS 70839 - 35708 Rennes Cede
Tél. +33 (0] 2 23 23 82 00 - Fax -

www.insa-rennes.fr

Modifications implemented in the project

Histogram

As an image processing application, the most used tool in ImagelNSA is no doubt the
histogram. It allows visualization by channels the number of occurrences of each pixel value
appears in the image.

Close to this concept, horizontal (respectively vertical) projection histogram takes a numeric
value entered by user as a threshold, it counts the occurrences of pixel value greater than the

threshold on each row (respectively column) of the image.

However, this module requires new features because the current version has three
imperfections. At first, the current histogram does not support zooming operation. Secondly,
the existing histogram of double image is meaningless since the counting interval is fixed to 1,
it would be better to choose the bin size independently. The last problem is that the cumulative

histogram of double Image is not yet implemented.

Before trying to solve the problem, let us first understand the structure and components of the
histogram, the graphic below shows the classes related to the histogram, from calculation of

occurrences to the display window of histogram.

[«]

[

Genericnterface ‘ magein ‘

W\c.gets | | Array | Image |

ImagWilyets

Histograriviss ‘ | HistogramiWindow | l’:eneﬂt-ii;l;ngram\iw ‘ |Gen?|i:HimgramWindw Hmugmrﬁ\'.‘indcw | ImageView ‘ ndow ‘ | DoublelmageWindaw ‘Gan?n(ngramL"aw |Ger'eﬂtHiswglamWindow | HistogramPicker | ‘ GraphicaHistogram

Figure 9 : Classes related to histogram

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7 ‘
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0]

www.insa-rennes.fr

Structure of histogram

The class Array presents a fixed-size array, it is the basic component of a histogram because
the number of occurrences of each value stores in an Array. The class Histogram inherits Array,

as an extension of Array it enables the notion of channel.

To display graphically the calculated histogram, the project employs Qwt library to control the
drawing part. Class GraphicalHistogram inherits the class QwtPlotHistogram to adapt to the

situation.

Class GenericHistogramView inherits QWidget, proceeds a vector (for different channels) of
GraphicalHistogram as protected member. It may create and display a graphical histogram

from a selected zone of the target image.

GenericHistogramWindow inherits QWidget, it has GenericHistogramView as a private
member. Its role is to add supplementary content in addition to the simple histogram display,

such as the status bar which shows the L/R clicked value and hovered value.

Class HistogramWindow inherits GenericHistogramWindow, it stays at the top level of this
structure with a role to switch the view to display (histogram or cumulative histogram) and

change the window title based on the type of histogram.

Another class called HistogramPicker has also been created to handle mouse clicks on

histograms, it inherits from QwtPlotPicker.

Class DoublelmageWindow inherits ImageWindow, it stores a double Image and its
displayable version in uchar format. ImageWindow inherits QWidget, it is a basic and wildly

used class describing image output.

The process of converting a double image to its displayable version will be discussed later.
Respectively, class StandardimageWindow stores a standard image, they could both create and

display an ImageView and update the status bar.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex i
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 2

www.insa-rennes.fr

Add zoom widget to the histogram window

In order to integrate zoom operations to the histogram window, the easiest
way is to employ a widget called QwtPlotZoomer in Qwt library. The

working mode of zooming in and out can be customized.

In the initial concept which consistent with other software usages, left select
un area to zoom in, right click to zoom out one step, ctrl & right click

together returns the histogram to its original size.

However, there were some conflicts in the definition of mouse events, originally left or right

click shows the values related to the current mouse position to the status bar, which coincides

& barbabmp - Histogram

1,600

= B E
g8 8 8

o
S

Number of specimen

o
b4

120 140 160 180 200 220

Histogram

Pixel value

Hovered : 146 R: 1409, G: 1207, B: 1270
R1744,G:1591, 81637 |8 [l

1 click value ; 138
R click value - 147

R 1424, G: 1151, 8: 1

=

329

[~ Red
Green
Blue

Figure 10 : A histogram window

with our zooming control. To avoid repeated definitions of right-click event, the zoom control

needs be enabled by a QToolButton before applying the zoom function.

Limit the input range of bin size

The current implementation of double histogram is meaningless because every pixel has

unlimited value possibilities, we cannot categorize them into statistics unless they are

artificially divided into intervals.

So, the first task is to create a QLineEdit widget to receive the customized bin size value, it
only appears when the displayed image contains double values. In order to avoid invalid
calculation results from the bin size entered by users, a widget called QDoubleValidator is used
to help customize the range of our bin size, according to the maximum and minimum pixel
values in a double image. The upper threshold of bin size is selected to not exceed the maximum

pixel value of an image and lower threshold is fixed to the value which leads to 1000 intervals.

Unfortunately, this widget does not work as expected, even with the QDoubleValidator

employed, we can actually type any value into the QLineEdit.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 2 23 23 82 00 - Fax +33

www.insa-rennes.fr

After analyzing the source code of QValidator, | find that values outside the allowed range will
only return an Intermediate flag instead of an Invalid flag. It only plays a role as a reminder
and will not restrict illegal input. In order to improve its performance, | created its inherited
class and override validate method to artificially limit its range. Considering the various
situations of inputting a value, empty field and incompletely entered value are enabled, decimal
position checking is enabled too, at the end, the input range is guaranteed by returning Invalid

flag for entered values out of the limit.

However, the new created validator may achieve the goal at 99% but is theoretically still not
perfect. For example, if the minimum value allowed is 0.755, and the bin size wanted by user
is 0.78, before typing entirely 0.78, the user must enter 0.7 at first and the mechanism will not
prevent user from doing this because it doesn’t know if the next number is 5 or 7. It means
although the minimum is set to 0.755, we can literally pass 0.7 to the program. Fortunately,
such error will only appear when limiting the minimum value and has no significant effect on

the final result.

Recalculate a histogram

After the custom bin size value is emitted as a signal, the correspond slot function needs to start
a process to recalculate the histogram, and this requires read the information stocked in the
original image. Therefore, the most suitable location of the slot is the DoublelmageWindow
itself, where we could launch the recalculation directly when receiving a request.

Cumulative histogram of a double image is not implemented yet, the calculation method is
somehow different from the traditional one, it needs to establish the ordinary histogram first
and then compute the proportion based on the whole image. Since the same window is shared
by these two histograms, they can be modified together. The first step is to turn on its operation
entrance defined in class UtilityService, and then we can return to the calculation of the

standard histogram.

The relationship between the classes has been introduced before, such modification of
algorithm needs to start from the lowest level. Class Array is updated at first to prepare for

limiting the range of bin size, two functions getvMin (respectively Max) are added to return

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex
Tél. +33(0) 2 23 23 82 00 - Fax

www.insa-rennes.fr

the maximum or minimum values of the target image, respectively from the original getMin

and getMin which return the extreme number of occurrences after counting.

Class Histogram is the lowest level of the histogram calculation process, its constructor has
been modified to support the new bin size element. A new computing method
computeDoubleHistogram has also been established to determine the serial number of intervals
that each pixel fits to.

/*Traversing the image again to find the corresponding pesition of each pixel value in the arrayx/
for(unsigned int d=rect.y; i<maxh; i++) {
for(unsigned int j=rect.x; j<maxw; j++) {
double pixel = img.getPixel(j, i, channel);
int pos = (int)floor((pixel - _vmin)/binSize);
if (pos »= size){
pos = size-1;
}
_array[pos]++;
}
}

Figure 11 : A part of computeDoubleHistogram method

In the same way, the obtained result needs to be divided by the image size and accumulated
together to get the cumulative histogram result. After calculating the data, we still have to plot
it and show graphically the result to users. For this purpose, modifications need to be done in
the GraphicalHistogram class. Since it inherits the QwtPlotHistogram class, we need to process

the data in its own way.

First, we need to create a vector of QwtIntervalSample. Each Qwtinterval corresponds to a bin,
the entire histogram is composed of bins, which is gain by dividing the maximum and minimum
values into the customized bin size. After filling QwtlIntervals with the calculated data, we can
use the setData method to draw graphic histogram. Additionally, in all related classes, we need
to add support for the new bin size variable, after doing continuous modifications layer by layer,
the complete function is finally realized.

& harba.hmp - Opésatian sur les pisels - Histogramme = | 31 [53 | 8 barhabmp - Opération sur les pixels - Histogramme . — | = |

Histogramme Histogramme
g [R
gt jr=
'-E 2,500 [THea
@2

¢ s w0 10 200 20 300
Valeur de pixel

Survok B R 132 Ve 183,85 1670

0 s w0 10 20 250 300
Valeur de pixel

WBVOED

tenvalle: 0.25 Entrer

& barbabmp - Opération sur les picls - Histogramme . — | o1 [5

¥ barbabmp - Opération sur les pixels - Histogramme . — | = | 1

o Histogramme Histogramme

! Tone e Touse
%wm] I =] gi* E | : =1
£ i Foa | E | iy [[
B0 50 3
o T 50007
Es,nm { £ om0
2200041 2 E 4,000
21000 2 20002

ol - (EE

O 50 100 150 200 250 300 0 S0 100 150 200 250 300
Valeur de pixel

Valeur de pixel

Survié 43 R127, V- I 0 2005

Figure 12 : New histogram working with different bin sizes

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 223 23 82 00 - Fax +33 (

www.insa-rennes.fr

File open error

The image file cannot be opened when its path contains character in other languages outside
the ASCII table. The path itself was found to be displayed correctly in the error message prompt,
it doesn't seem that the characters are parsed incorrectly during the cast (The file name was

read as a QString and converted to std::string when opening by std::fstream).

By default, English characters are represented by 1 byte, while the characters of other countries
(such as Chinese characters and French characters with phonetic symbols) cannot be
represented by a single byte. Multiple bytes are used to represent these characters. The error
was at first considered as a dislocation in decoding that produce garbled. In the test phrase, utf-
8 encoding was kept during the whole transfer process, but still did not work. The root cause
of this problem was found to be the Windows code page. Windows kernel has already adopted
Unicode encoding, so that all languages in the world can be supported and displayed correctly.
However, since many existing programs are encoded in a specific language, such as GBK, it is
therefore impossible to stop the support of the existing encoding and force everything to
Unicode. That's why Windows uses code pages to adapt to various countries and regions, the
current code page is by default 936 (GBK) so the image file is encoded by this way, while the
pc in the lab room uses 850 (Latin-1). To adjust automatically the program ignoring the

difference of computers, Local8Bit are used to adapt the encoding method to the host's code
page.

This change is only necessary for windows users, because on Linux file names have no concept
of character set. They are just a bunch of bytes which then get interpreted as strings based on

the local 8-bit encoding.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33 (0) 2 23 23 82 00 - Fax +3 91
www.insa-rennes.fr

Empty image error

Reported by issue #90, the program occasionally crashes when selecting an area in the image
window. The problem could not be reproduced at the beginning, but after many attempts it was

successfully discovered.

In normal cases, selecting an area will create an invisible rectangular object, the rectangular is
defined by the point of departure and the corresponding diagonal according to the distance
moved by the mouse. Smoothly dragging the mouse out of the image window leads to copy the

selected area into a new image, as defined in GenericOperation.

The problem occurs when we double click an image with left button, the area selecting
operation might be triggered by mistake and since the mouse has not moved, the size of
rectangular is set to 0x0. Then if the user drags around the mouse and releases it somewhere
outside the image window, unfortunately, a void image will be copied to the navigation bar and

lead the crash.

To solve this, a verifying step is added to mouseDoubleClickEvent. Before dropping a copy of
image into the navigation bar, it checks the size of the target rectangle, nothing further will

happen with an empty rectangle.

Empty image leads to crash in a general way, not only happens in the case mentioned below
but also after the generation of empty images. It is necessary to block the generation of empty
images provided by this program itself, there are three operations under the Tools menu which

lead to image generation: Generate random image, Generate RGB image and Sinus synthesis.

A verification step is added to test the input value of width and height, neither of them can be

0 and the proposed value by default was changed from 0 to 512.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 223 23 82 00 - Fax +3
www.insa-rennes.fr

Logical operation error

A few logical operations between images do not work properly, the first image is returned

instead of the desired result.

After verified the program output in debug mode, "Unknown operator'&'!™ was threw as an
error message. Class PointOp is found as the one which contains all the algorithms of pixel
operations. It inherits GenericOperation class, the basic class for all kinds of operation.

The following example shows how a standard pixel operation is defined as template and

processed according to the selected option in the drop-down bar.

/ struct Pixadd : Pwop tedepth_t> { PointOp: :PixelOps PointOp::PixelOp::fromString(QString op, QString expr) {
Pixel Operatien Templates PixAdd(cdouble value) : PixOp_t<de pth o(alue. ; o if (op= PixAdd (expr.toInt(8,0));
! intmax_t op(depth t pixel) { return pixel + value; } $E(FixAdd (-expr. taInt(8,8))
struct lt"l 112;1 ; . . (a Lt el T ¥ () PixMul{expr.toDouble());
ep ope or () (dep pixe -
f{op= w PixMul(1/expr.tobouble
return normali (tl rop (pixel)); struct DoublePixAdd : DoublePixelop { N (op " o (Jexp 0); .
] DoublePixAdd (double value) : DoublePixelOp(value) {} lop (bit-wise AND)") © PixBituiseand (expr.tollInt(0,8));
rtual intmax_t op(de pth t pixel) = o3 double op(double pixel) ¢ return pixel + value; } {lop==rat (logical AHD)") return PixLogicaland (expr.toUlnt(8,0]);
static Pixelop* fromString(Qstring op, GString expr); 1l ="l (logical NOT}"} PixLogicalNot(expr.toUInt(@,0)};
}; | (bit-wise OR}") PixBitwiseOr (expr.toUInt(®,0));
ct DoublePixelOp { struct Pixmul : waon tedepth_ts { | (logical OR)}"} PixlogicalOr (expr.toUInt(@,0));
oublePixelop(double value_ = 8) : walue{value_) {} PixMul{double value_) : PixOp_t<de F..h ,,(alue.) [} (bit-wise XOR)") return XBitwiseXor (expr.toUInt(e,9));
Treust asinte - operatar() (double s 1 intmax_t Dﬂ(deplh + pixel) { return pixel * value + 0.5; } " (logical XOR)") return xLogicalXer (expr.toUInt(0,0));
return this->ep(pixel); 1: if(op==rcct) c:um new P'\sth'\ft(expr toUInt(0,0));
1 N o if{op=="33") return new PixRshift(expr.toUInt(9,8));
virtual double ap(dousle pixel) = B) Struct DoublePixMy 1_ : Do H pixelop { 1% (op= return new PixIdent();
;tﬂ:c UDTBLE_‘PWHUD' fromstring(Qstring op, Qstring expr); n ublaPixhul (double value) : boublePd muc alue) {} std:itcout << "Unknown operator '" << op.toStdString() << "' ! PixelOp"
35 cupe vatues , dauble ep(deul it i ‘-) return pixel : return new PixIdent();

}

Figure 13 : An example shows how pixel operations work

By analyzing the current implementation, a logical error was found when processing the
selected options in the dialog box. The result image can be output in a uchar or double format
according to user’s choice and this output format option is used as an important basis for the
judgement of branch switching. In the existing logic, if the second operand is an image, the
program will enter the wrong branch and consider the operand image as a double image. But
currently there is no '&' logic implemented for double images, when the program cannot find a
suitable processing function, it will by default send back the original picture to user.

After fixing this error, the user interface is still not clear enough. If only symbols are used, it
may cause confusion between bit operations and logic operations. A better way is to cancel the
unified drop-down menu bar and make the content update automatically according to the

selected options and the type of the second operand.

First, it is necessary to clarify the conditions under which the optional items appear. Arithmetic
operators will always be available regardless of the input and output types.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 2 23 23 82 00 - Fax +33
www.insa-rennes.fr

Bitwise operators will be deactivated if one of the 2 operands is double, this type of operation
takes 2 standard images or 1 standard image and a positive integer as operands, the output will
be always in uchar format (unless the double option is selected, pixel values will be converted
to double by adding .00 at the end). Logical operators take all kind of operands and it return

the result processed by standard C logic.

In order to achieve this, a signal will emit when the item selected in the drop-down menu
changes. The bound slot will then check the existing options to select the corresponding
validator. A new class inherits QLineEdit is created, it verifies whether the string contains
keyword such as bitwise, logical or shifting symbols to enable the corresponding validator for
the common input widget. When a Not operation is detected, the input field will be closed,
because the inversion of images takes the complement value of 255, it does not require a second

operand.

void updateValidator (const QString &text){
J=Allow only @ and 1 as input=/
QRegExp reglogicalExp("A[1]dx|@5");
J*Allow positive integer as inputx/
QRegExp regShiftExp("i\\d+5");
QRegExpvalidator* logicalvalidator = new QRegExpvalidator(reglLogicalExp,®);
QRegExpValidatorx shiftValidator = new QRegExpValidator(regShiftExp,e);
QIntValidators int¥alidator = new QIntValidator();
QDoublevalidatorx doubleValidator = new QDoublevalidator();

i f(text.contains ("NOT")) {
this->setEnabled(false);
Jelse{
this->setEnabled(true);
}

if(text.contains ("logical™)){
this->setValidator(logicalvValidater);
Jelse if(text.contains("<c") || text.contains(">>")){
this->setValidator(shiftvalidator);
Jelse if(text.contains("bit-wise)){
this->setvalidator(intvalidator);
lelse{
this->setValidator (doublevalidator);
}
}

Figure 14 : Change strategy based on the selected content

The newly added logical operations are directly defined on the default logic of C, they do not

seem to be very meaningful on image manipulation.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] .

www.insa-rennes.fr

Image save error

When trying to save the image of the current window, the selected suffix does not take effect,
it remains always the same as the original file regardless of the option selected.

This suffix adding process is then reimplemented, now it determines the position of the last
“.” in the original image if there exist more than one. It will intercept the pure file name
through a series of string operations and then add the desired suffix to the back.

The proposed image name was also changed to retain the operations that have been
performed before, the desired suffix will be added to the end of string.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 2 23

www.insa-rennes.fr

Log scale error

Log scale is a tool to enlarge the display values on a logarithmic scale to facilitate the
observation when the original values are close to zero and no important information can be

observed. It seems not to work on the imaginary part of the calculated FFT operation.

255 * log(mag * logConstant * _logConstantScale + 1)

value =
log(255 * logConstant * _logConstantScale + 1)

logConstant = gog2Mean)/g _logConstantscale = g05"l0gscale3 logScale = input value of slider mag = original pixel value

Figure 15 : Log scale formula

After analyzing and refining the existing code, the log scale function is found to perform the
above formula. By testing several cases which the function is not working, the problem was
found to be related to the mean value. The scaling function will not work if the mean value of
an image is too close to zero. In such situation, no matter how we manipulate the slider, a

multiplier close to zero can absolutely take off the effect of the it.

To solve this problem, mean of absolute values is used instead of the native mean value of an

image. Since its value is not near zero, the function of slider back to normal as expected.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 223 23 82 00 - Fax +33 (0] 2 2

www.insa-rennes.fr

Optimize the display of double images

As mentioned earlier, the program can process images in any format with the help of its
template definition which is expansible enough. But the current mechanism does not support
any display of image with decimal or negative values.

In order to retain the complete information of the original image, a processed copy in uchar
format that can be displayed normally will be generated by a function call makeDisplayable
to meet this requirement and the real result image is hiding in the DoublelmageWindow, it

never shows itself directly to users.

In general, operations that may output a double image will always propose some available
options such as truncation, offset and scaling for users, these options are then used as
parameters of makeDisplayable. This treatment is done quietly after the main operation and

users will only get a displayable image in uchar format.

In order to make users have the right to regret, to be able to see images that are closer to the
original results, to get intuitively an impression of the differences between truncation, offset
and scaling, two checkboxes are added to help restore the unprocessed (truncation and double
to uchar conversion will still be applied if necessary) result image, which leaves the choices

to users.

That means after the calculation of any operations, if the result image contains any negative
values, there will be two options available and already on checked state in the image window,

representing the offset & scaling which if performed by default.

The user can then uncheck these two options to recalculate the display image based on the
original image, no new windows will pop up like the previous version, all changes are done
in the target window. There are actually three different situations, the first one is standalone
without unnecessary processing. The second case adds an offset of 127 to all pixels. Third,
linearly map the value beyond the limit to the target interval and then add an offset of 127, so
that the minimum value becomes zero, 0 becomes 127, and the maximum value becomes
255. At the same time, the formula used in the transformation will display in the information

window.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex
Tél. +33(0) 2 23 23 82 00 - Fax

www.insa-rennes.fr

After introducing these changes, we still need to modify the makeDisplayable function since
it involves other functions such as log scale. If we ignore this step, they will be executed in a
parallel way, and each change will start from the original image, in this case the position of

the slider will become meaningless.

So, I integrate all the related functions into makeDisplayable and reorganize the order of
execution. Now the checkbox will be executed after the log scale function and based on its

result, so there is no more disharmony.

& lenabmp - SquareLaplacien Résultat = | ® |52 | # lenabmp - Squarelaplacien Résultat -0 (=@ =

Image : lena.bmp(512x512) Zoom:100% g =B 8 Image : lena.bmp(512x512) Zoom:100% g (30 B A b
¥ Décalage (127) (7] Mise léchelle [¥] Décalage (127) [T Mise & l'échelle
min:-S875 max:45 mean:00 standard deviation : 4.7 min:-5875 max:45 mean:0.0 standard deviation : 4.7
Survolé : Sex21 Couleur : 1.25 Survolé : -46x308 Couleur :

vt 2 (oo el |

lenabmp - Squarelaplacien Résultat - 1 o & [] | # lenabmp - Squarelap

Image : lena.bmp(512x512) Zoom : 100% H--aald Image : lena.bmp(512x512) Zoom ; 100% TR S |
[Décalage (127) [Mise & Péchelle [Décalage (127) [mise & rchelle
min:-5875 max:45 mean: 0.0 standard deviation ; 4.7 min: 5875 max:45 mean:0.0 standard deviation : 4.7
Survolé : 13487 Couleur : Survolé : 265x14 Couleur ; 1.75

Figure 16 : Comparison of different treatments of an undisplayable double image

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 223 23 82 00 - Fax +33 (0] 2

www.insa-rennes.fr

Ul issues

A large number of issues registered on GitHub is related to the user interface. In some cases,
the output information generated by operation does not match the actual function, a lot of
notions in the current langue version are inconsistent with other versions (only English and
French are available), and there is no helping prompt to help users understand the available

options and features of an complex operation.

Each situation has its own approach to deal with, in the first case, we just need to modify the
output information to make it coherent with the reality. To solve the translation problems, we
need to use an internal tool called Qt's linguist, which is very efficient and practical and

greatly simplifies the workload.

It only requests to add the tr() conversion to the user-visible strings. Once it is enabled in
CMakeL.ist, it may generate automatically the correspond ts files (a readable translation file
using XML format) according to the changes detected. After manually modified each
translation text in the target language, it can generate a gm file (a binary file) which can be

loaded by the program to switch language.

To make users understand the meaning of each option, there is a very practical function
called setWhatsThis that connect various components of an user interface to a help message,
which is activated by the question mark in the upper right corner of the window. Some other

types of tips are also added in different ways to help users understand the current operation.

B Paramétres. ? X

Second opérande
() Valeur) Image

Image en sortie
(®) uchar) Double

Options
[Décalage [T Mise 2 léchelle
[] Eclater les couleurs

Cocher cette option pour exdouter la
manlpulation par canal

H, for hue, s n the range 0 to 239, Red is 0 (deprees), areen is 120, and blue is 240 25 shomm by the poprup image

e 0to 255, end the bigger Lis, e sironger e soler is.

to 253 and represents ighmess or brightess of the color, O reprasents for black,

Figure 17 : Tips managed by
setWhatsThis function Figure 18 : A tip given by a pop-up window

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 223}

www.insa-rennes.fr

Deploy Qt application on Linux

The existing configurations can successfully deploy the executable file for the windows
system with the help of windeployqt, an official deployment tool and the executable can be

directly used on other windows machines.

But in Linux machines, it cannot be constructed in the same way, the executable file
generated by Qt on Linux needs to be accompanied by dynamic link libraries and is not able
to run on other machines without Qt environment or with Qt but the dependent libraries’

versions are different.

The root cause of this problem is that the executable file is dynamically compiled, and when
executed it needs to call the commands in the corresponding dynamic link library. Although

the size of the executable file is well reduced, it is an unsound application without portability.

To solve this problem, all the associated link libraries need to be attached to the executable.
This requires employing a shell script called Idd to display the dependencies of the
executable, and then we need to find (I used apt-file search to do this job) the locations of
libraries that the program depends on and copy them to the release folder. There may also be
some problems in this process, sometimes the Idd results point to some symbolic links ending
with .s0.5 instead of the correct shared object, but the ones need to be copied are always the
source files not the link files. When trying to launch the program on other pc, | received an
error message: "The Qt platform plugin "xcb" could not be loaded... This application could
not be started because the Qt platform plugin could not be initialized.” To solve this problem,
two libraries libxcb-xinerama0 and build-essential are required on the target Linux system,

and there will be no problems after installation.

In addition, there are two other methods that can also be used to deploy the program on
Linux, a deployment tool called linuxdeployqt that automates the procedures is recommended
by Qt. Unfortunately, due to the lack of support for the newest Ubuntu system, this tool failed

to run on my pc.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 22323 82 00 - Fax +

www.insa-rennes.fr

https://github.com/probonopd/linuxdeployqt

The third method is to statically compile the program under Linux, this approach requires a
statically compiled and installed Qt platform. After downloading the source files of Qt, the
-static option needs to be enabled when compiling. In this case, environment variables need

to be set manually to enable the static version of Qt.

Unfortunately, because I did not uninstall the ordinary version, there were many conflicts that
I could not even open the Qt Creator, | had to give up this idea.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0] 223 23 82 00 - Fax +33 (0] 22323 8

i 1
www.insa-rennes.fr

Unit Testing

Unit testing is used to test the correctness of a module, a function or a class. The goal is to

isolate each part of the program and show that the individual parts are correct.

In previous versions of detig-t project, there were class tests for the Imageln library, a macro-
level test for the GenericInterface and several basic applications were also covered.

Unfortunately, due to excessive changes, their executions were all failed.

There is another test written for the generic user interface. Starting from the main window
and add progressively available modules to test its functionalities. The processing results
need to be compared with MATLAB in the verification step. Unfortunately, this test was not

able to pass the compilation stage either.

Under this situation, a test framework that is easy to modify when the version changes are
strongly needed. Since it is supposed to serve as a basic module for subsequent development,

it needs to be robust enough to and its availability must be ensured.

The project contains many classes, and these classes depend on each other. These
relationships may be intricate and cannot be separated. Making individual test outside the
project is not feasible, if a class is tested separately, due to dependencies, the test code

requires a large number of related mock objects to achieve a successful compilation.

So, the test code needs to be integrated into product code to reduce the cost and difficulty of
testing. If tests and the entire project are compiled together, almost all resources of the

product code become available for the tests and so solved the dependency problem.

There are two ways to achieve this structure, one is to write the code directly in the original
class to get more convenience and efficiency, it shares a main entrance with existing
program, and the test content is easy to update when the program code changes. | chose this

path when first tried and two external libraries were used to simplify the workload.

The first one called Catch2, it is a header only C++ test framework which requires no
external dependencies. Tests can be tagged and divided into sections, each one could run in
isolation way and the output is done through the modular reporter object, detailed reports are

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex
Tél. +33(0) 2 23 23 82 00 - Fax

www.insa-rennes.fr

given in xml format. I found it very user-friendly and easy to get started. As a supplement, |
chose Fakelt as another external library, it is a header only library for C++ mocking
framework. Although it is not able to mock classes with multiple inheritance, it remains a
very advantageous tool and the dynamic casting is well supported. The algorithm part was
written smoothly at the beginning, but I encountered a serious problem when entering the
service part. Most of the service classes inherit QObject because they need to make a
response to signals, however, the two external libraries do not support Qt's features well, and
irreconcilable contradictions continue to emerge. In the end, considering that the introduction
of external libraries is not conducive to subsequent development, | decided to abandon this

approach and write the test class separately.

The test code is now completely independent of the program code and is completely
controlled by CMake. In this case the Qt Test framework is used, which has a huge advantage

in the regard of testing Qt based libraries.

The reason why Qt Test was not used at the beginning related to its poor support for fixtures
and mocks. But on the other hand, it does a good job in GUI event simulation, with the help of
QSignalSpy which may connect to any signal of any object and record its emission information,
it becomes very useful in most of the scenarios. After using QSignalSpy to capture the signal,

we may directly call the slot for testing.

Qt Test also provides a series of simulation interfaces to facilitate interface testing, by
simulating mouse and keyboard activities, it becomes possible to verify directly the availability
of contents of the practical courses if we use QTestEventList to encapsulate a series of mouse

and keyboard operations which meet the requirements of the practical works.

During the implementation process, many problems were encountered, and the header file
problem was the most influential one, a lot of time was spent to troubleshoot and solve this.
Without changing the program code and adding only test classes, the test entrance is managed
by CMake which remains independent from the main program entrance. When compiling the
test, the multiple inclusion relationship of the header files it contains will become chaotic due
to the including style of header files, some headers use absolute references while the others
using relative path.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex

Tél. +33(0) 223238200 - Fa
www.insa-rennes.fr

When the entry is the main program, such a problem will not occur because the header files
and source files are packaged in the order of the modules under the rules of CMake, so any
search for references can point to the correct location. But the test classes do not have this
preferential treatment, what they give were actually the unclear errors. Once the cause of the
error is known, the solution will be found quickly, just need to compile the source code into
libraries, and then integrate them to the test classes.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0] 223 23 82 00 - Fax +33 (0] 22323 8

i 1
www.insa-rennes.fr

Conclusion

In conclusion, | have to say that what | learned from this project far exceeded my
expectations. Its meaning is not only reflected in the programming level but has profoundly

affected me at multiple aspects and made me greatly improved.

Thinking from the perspective of a software developer, instead of being oriented toward
completing a certain task like what used to do in practical classes. | start to think which
features are actually beneficial to users and whether certain options are misleading,
considering the overall product.

From a debugging perspective, | realized that it is better to jump to the source of the
problematic component for in-depth analysis, because in a large project many components
and functions are interrelated, errors may occur in irrelevant places. How to view the
relationship between components from a global perspective and how to manage their

relationship has brought me a lot of thinking.

From a point of view of Ell student, the software is developed for the purpose of education,
its functions are exactly what we have encountered at school. Through the inspection of
algorithms, | have reviewed the previous courses and deepened my understanding of image

processing methods.

Considering the programming skills, | become a proficient user of Qt through this project and
be able to apply its various features to complete the tasks, especially the communication
between signals and slots. | have also gained a lot in C++ field, as a software which has been
optimized for many times, it has many gorgeous and outstanding code writing style that
benefited me a lot. Not to mention the CMake that | learnt for this project, the practical tool

which might be very helpful for the future.

Back to ImagelNSA itself, | am honored to be able to make some contributions to it, solve bugs,
improve some of the previously defective functions and add new components to the software.
I am very pleased that it has become better with my efforts.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 2 23 23 82 00 - Fax +33 |
www.insa-rennes.fr

ID

© B N R W N o

I o - =N .. P . =N . SN .
ERNBEB G eI ar om0

30

Annex A -- Timeline

Title Start Time...t
Project kick-off 06/03/2020
Installation of the environment, getting started with project compilation 06/04/2020
Browse the code and analyze the project structure 06/08/2020
Fix the crashing bug on empty area manipulation and adjust the default parameters when creating a new image 06/15/2020
Add support for opening image files with non-English characters 06/20/2020
Add zoom in and out functions to the histogram window 06/24/2020
Modify the counting logic of histogram and enable custom bin size 07/01/2020
Enable cumulative histogram calculation for double images 07/16/2020
Adjust the logarithmic scaling calculation logic for double images 07/27/2020
Update pyramid operations 08/03/2020
Fix logical mistakes in pixel operations 08/14/2020
Update inaccurate display information 08/21/2020
Add explanation for classification operations 08/24/2020
Fix the suffix bug when saving images, the names of already done operations have been added to the recommendation of filename 08/29/2020
Fix some inaccurate translations 09/01/2020
Update DCT restrictions 05/05/2020
Add an operation to convert the image into absolute values 09/09/2020
Add a pop-up help window for hsv image generation 09/11/2020
Update pixel operation module, separate bit operations and logic operations, add supplement operations 09/16/2020
Update the display mode of double images, enable offset and scaling by default, these options can be turned off by users 09/23/2020
Reconstruct the visualization logic for double images so that offset and scaling can be performed after log scale 10/02/2020
Add automatic testing framework 10/09/2020
End of project 10/30/2020

Jun Jul Aug Sep Oct
31-06 07-13 14-20 | 21-27 28-04 | 05-11 12-18 | 19-25 | 26-01 02-08 09-15 16-22 | 23-29 | 30-05 | 06-12 13-13 20-26 | 27-03 | 04-10 11-17
¢
|
|
|
]
I
I
I
—
I
—
|
|
|
]
|
[]
|
|
—
I

Figure 17 : Timeline of the project

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7
Tél. +33(0) 22323 8200 - Fax +33 (0] 2 23 23

www.insa-rennes.fr

End Time

06/03/2020
06/07/2020
06/14/2020
06/19/2020
06/23/2020
06/30/2020
07/15/2020
07/26/2020
08/02/2020
08/13/2020
08/20/2020
08/23/2020
08/28/2020
08/31/2020
09/04/2020
09/08/2020
09/10/2020
09/15/2020
09/22/2020
10/01/2020
10/08/2020
10/30/2020
10/30/2020

18-24 25-31

Annex B -- Suggestions for building the project

For the installation of RandomL.ib, it is better to use cmake rather than make, otherwise it
must be manually added into the PATH:

cd RandomLib-1.10
mkdir BUILD

cd BUILD

cmake ..

make

sudo make install

For the installation of Qwit:
cd gwt-6.1.5
gmake qwt.pro

make /* In this step, if the OPENGL library is missing (fatal error: GL / gl.h: No such
file or directory), the installation of build-essential libgl1-mesa-dev will solve this problem */

sudo make install

Important: After completing the above steps, you still need to manually copy some files from
Qwt directory to your Qt directory (required under both Linux and Windows systems):

1. Copy gwt-6.1.5/designer/plugins/designer/libqwt_designer_plugin.so (or .dll) to
Qt/5.15.1/gcc_64 /plugins/designer

2. Copy all files in qwt-6.1.5/lib to Qt/5.15.1/gcc_64/lib

3. Create a new folder in Qt/5.15.1/gcc_64 /include and name it qwt, copy all the header files
under qwt-6.1.5/src to the new created qwt folder.

For the last three, if under Linux system, the easiest way is to sudo apt install zlib1g, libjpeg-
dev and libpng-dev. There is no shortcut for Windows users, you need to install the ordinary
version of the three libraries.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0]

www.insa-rennes.fr

Annex C -- Manual of Test

The test framework has been repaired and integrated into the main program through CMake,
it will compile together with the application and generate an executable file called detiq-
t Test in your BUILD directory.

In order to run the test, you have to manually copy the res folder (where this file is located) to
the same location of the executable. (Note: better to enable the "Run in terminal™ option
(found at Projects--Build & Run--Run Settings--Run) if you decide to run the test through Qt
Creator.

The test is mainly written for the Imageln library, to test several low-level actions provided
by this library, such as reading/writing operations towards different image formats, copy &
crop operations, format conversion and serval algorithm tests including the MorphoMats.

If you want to add other tests for further development, please refer to the Test.h and Tester.h
files, they define a basic test framework to be inherited, including the common functions of a
test such as constructor, init, test cleanup and info (to point out where the error occurred).

You can add the content and method you want to test in your own test file and start the test by
creating a tester file that can execute multiple tests (Testers need to be added to the main
function for the purpose of unification).

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 223 23 82 00 - Fax +33 [O‘]
www.insa-rennes.fr

Annex D -- List of Figures

Figure 1 : The structure of ImagelNSA --------p10
Figure 2 : Contents of Imageln library------------ --------p11
Figure 3 : Contents of Genericlnterface library pl3
Figure 4 : The arrangement of the mentioned components--------------------- p13
Figure 5 : Contents of Core library -- -pld
Figure 6 : How operations are added to the user interface----------------- pla
Figure 7 : Contents of App library ---p15
Figure 8 : List of operations defined in App library pl5
Figure 9 : Classes related to histogram-------- pl7
Figure 10 : A histogram window---------- -- p19
Figure 11 : A part of computeDoubleHistogram method---------------------- p21
Figure 12 : New histogram working with different bin sizes p21
Figure 13 : An example shows how pixel operations work--------------------- p24
Figure 14 : Change strategy based on the selected content---------------- p25
Figure 15 : Log scale formula-------------- -- p27
Figure 16 : Comparison of different treatments of an undisplayable double image------
p29
Figure 17 : Tips managed by setWhatsThis function p30
Figure 18 : A tip given by a pop-up window -- p30
Figure 19 : Timeline of the project -p37

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7 ‘
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0]

www.insa-rennes.fr

Annex E -- Glossary

Qt : a free and open-source widget toolkit for creating graphical user interfaces as well as cross-
platform applications that run on various software and hardware platforms such as Linux,
Windows, macOS, Android or embedded systems.

CMake : a cross-platform free and open-source software tool for managing the build process of
software using a compiler-independent method. CMake is not a build system but rather a build-
system generator.

Code page : a character encoding and as such it is a specific association of a set of printable
characters and control characters with unique numbers.

HSV (hue, saturation, value) : an alternative representation of the RGB color model, designed
to align more closely with the way human vision perceives color-making attributes.

Histogram : an approximate representation of the distribution of numerical data.

Unit testing : a software testing method by which individual units of source code are tested to
determine whether they are fit for use.

INSA Rennes

20 Avenue des Buttes de Coésmes
CS 70839 - 35708 Rennes Cedex 7

Tél. +33(0) 22323 82 00 - Fax +33 (0] 2 23
www.insa-rennes.fr

Annex F -- Work to be done in the future

Morphomath :
Improve the display o the structure element, visually highlight the center (position: pixel index =

size / 2 with entire division) and allow users to move it interactively.

Since the image of the view is defined as a grayscale image, to present the center by a red square,
| need to refactor this infrastructure or rewrite several methods of QGraphicsScene to achieve a

three-layer display. | tried to improve this but failed because of the time limit.

Double image saving :
At present, this function has not been implemented, just as the display of a double image is actually
its processed version by function makeDisplayable, the image saved is actually a record of its

Uchar copy.

Quantification :

It is not yet able to quantify double images.

(Note: If you make changes to the quantification module, test also the feasibility in the DPCM

module and vice versa)

Interactive line/column profile :
In the Line / Column Profile display, allow the user to dynamically select the line to observe.

Operation of double images :
Ideally, it is better to make all existing operations possible for double images.

Tests :

| fixed some old tests that failed to run and corrected some algorithmic errors, they are the
companion products of the detig-t project. These tests are integrated into the main project through
CMake, they are basically towards the Imageln library, to complete other types of tests, please
check the README file in the Test folder.

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0] 2 2:

www.insa-rennes.fr

Abstract

Keywords : Image processing, C ++, Qt, Software development, Unit testing

This end-of-study project was carried out in EIl department of INSA Rennes (Done at home
actually, according to government's epidemic prevention measures) from 3rd June 2020 to
30th October 2020. The motif of this project aims to the maintenance and improvement of
ImagelNSA, an image processing software developed at EIl department in INSA for
educational purposes. During this project, many bugs were fixed, some functional
components are optimized and new features were added including an automated testing

framework.

R&ume

Mots cl& : Traitement de I'image, C++, Qt, D&eloppement logiciel, Test unitaire

Ce projet de fin d'é@ude a &éérélisédans le déartement Ell de I'INSA de Rennes (R&lisé
chez soi en raison des mesures de prévention des éidémies du gouvernement) du 3 juin 2020
au 30 octobre 2020. Le but du projet vise le maintien et I'am@dioration de 1’ImagelNSA, un
logiciel de traitement d'image développ&au déartement Ell de I'NSA de Rennes pour des
fins p&lagogiques. Au cours de ce projet, des nombreux bugs ont &é&corriges, certains
composants fonctionnels sont optimisés et nouvelles fonctionnalité ont &é&ajoutées ainsi

qu’un cadre de test automatisé

INSA Rennes
20 Avenue des Buttes de Coésmes

CS 70839 - 35708 Rennes Cedex 7 ‘
Tél. +33 (0] 2 23 23 82 00 - Fax +33 (0]

www.insa-rennes.fr

