// Program 4: Load dataset, normalize and shuffle, then train and save the model newModel model4 configure { Dataset dataset4 = loadData("test.csv") dataset4.normalize() dataset4.shuffle() dataset4.split(0.7) dataset4.generateDataLoader() model4.SGDoptimize(0.005) model4.setLoss(crossEntropy) model4.compile(linear(4, 64), applyTanh(0.7), linear(64, 3), applySoftmax(0.4)) model4.train(dataset4) model4.saveModel(model4_saved) }